2.7. Ouanturn measurement

Now we are prepared o present the complete situarion of quantum measurement.

Measuring
device

U s any unitary wensformartion marrix. C is the {causal) densicy marrix of the preparation, a
state vector which defines the inidal state D of the quantum system to be measured. C' is
_ the (causal) densicy matrix of the measurement which couples the final stare D' to the
measuring device. See (Errer 2nd Noyes, 1998) for 2 more complete presentation.

There is no actnal wave function to collapse — it’s connterfactual,
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ABSTRACT

A core level of basic Informarion for physies is identified, based on an analysis of the characteristics of the parameters
space, time, mass and charge. At this Ievel, it is found that certain symmetries operate, which can be used to explain
certain physical facts and even to derive new mathematical theorems. Applications are made to classical mechanics,

glectromagnetic theory and quanturn mechanics.
1 A foundational level

Certain aspects of physics suggest the existence of a
core level of basic information which is completely
independent of any hypothesis or model-building. This
information is concerned with the definiion of the
fundamental parameters of measurement and how they
are structured. Here, we aré not so much describing
nawre itself as specifying the characteristics of the
simplest categories needed to make such a description
possible. It is, of course, sometimes argued that
physics should not necessarily be concerned with the
simplest possible ideas because nature may well not be
simple in principle, but this argument is based on a
misconception, Physics as we know it has evelved
because it has created a set of simple categories which
have been successful in devising the hnman construct
that we call the ‘description of nature’. Whether or not
such simplicity is truly characteristic of ‘reality’ is
beside the point.

Now, the purpose of isolating a foundational level for
physics would be to give a simple account of those
important facts which are purely concerned with our

 own processes of measurement, and not with, say, the

nature of matter or the structure of the universe. Such
information, if isclated, could be dealt with mare
efficiently than if linked, unmecessarily, with more
specific or more complicated theories, and could lead
to the creation of wholly pew sources of foundational
information. In addition, If we pitch our foundational
theories at a high level of sophistication, as we are
often tempted to do, we cul ourselves off from
understanding their origins, Many truly fundamental
results have often turned out to be simple in principle,
even when it has taken a sophisticated approach to
find them. The simple bases are often found only after
a prolonged siruggle with more complicated ideas, but
it is possible thar we could discover some of them
more easily by a direct analysis.

In attempling te reach the foundational level, then, we
need to separats out the truly fundamental idsas from
the mass of sophistications which inevitably
zccompany them, but the really basic ideas may not be
particularly difficult to find. Obviously, for example,
space and time are basic; it is impossible to conceive a
theory of physics without space and time. This is not
necessarily true for 2 combined space-time;
combinations, by definition, are pot basic. If we use
space-time as basic, we lose sight of the separate
identittes of space and time, which are surely
important at the fundamental level, It is certainly not
true that in combining them we have explained one in
terms of the other. We should really regard space-time,
whether curved or otherwise, as a sophistication, as
something to be discovered after we have investizated
the separate identities of space and time. ‘

Once we have selected space and time, there is only
one other type of informarion that is likely to fit the
description 'basic’, for the fundamenta!l bases of the
whole of physics are undoubtedly the four known
interactions: gravity; electromagnetism; and the strong
and weak nuclear forces. Once we truly understand
these, then we will also understand physics. But we
aleeady know something about them. We know, for
example, that the source terms for gravity and the
clectromagnetic interaction are, respectively, mass and
electric charge. We don't know the source terms for
the weak and strong forces as precisely, but we know
thar such terms must exist; and, according to the rules
of quantum electrodynamics, they should be more like
electric charge than like mass. Also, although the
three nongravitational forces are very different under
normal conditions, the Grand Unified Theories of
particle physics suggest that, under ideal conditions,
they would be identical. It is reasonable, therefore, 10
assume that the differences berween these forces are
not basic, bur a ‘sophistication’, to be explained in
terms of the physical particles that actually exist, afler
we have established the basics. I have, therefore, found
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it conventent 1o describe the unknown sources for the
weak and strong interactions as weak and stromg
‘charges’, and to refer somefimes to the three
nongravitational sources under the collective label
‘charge’. (Something like this concept is actually used

when we talk about the process of ‘charge

conjugation’.)

" Thus, we have four basic parameters — space, time,
mass and charge — and we can use such techniques as
dimensional analysis to show that all other physical
paramefers arise from compounded versions of these
elementary ones, We can also show that it is precisely
these pamameters which are assumed to be the
elementary ones in the statement of the CPT theorem.
1L is perhaps slightly surprising that physicists have
been so often prepared to tackle fundamental questions
without taking proper account of these basic ideas.
Although we can’t hope to analyse really basic deas,
we can learn a great deal by setting one off against the
other, It would surely be profitable to examine the
properties of these parameters as closely as possible
and look for patterns, or symmetries of one sort or
another, that would help to clarify their meaning and
uses. Symmetry has been such a powerful toc in
understanding particle physics and the fundamental
interactions that we have every reason to expect to find
it hete. We should, at any rate, examine the properties
of our parameters to see whether or not it exists.

2 Conserved and nonconserved: mass and charge
versus space and time

Perhaps the first thing that we notice when we closely
examine space, time, mass and charge is that the last
wo are conserved quantities and the first two
nonconserved. The conservation laws of mass and
electric charge are among the most fundamental in
physics, and we have every reason 10 believe that they
are true without exception. Almost certainly, also,
some type of conservation law applies to the other two
types of charge and manifests itself in such properties
of fundamental particles as lepton and baryon
conservaton. In addition, the conservation laws of
mass and charge are not merely global, applying o the
total amount of each quantity in the unjverse, but also
local, applying to the amount of each quantity at 2
given place in a given time. It is as though each
element of mass of charge had an identity which it
retained throughout all interactions, subject only, in
the case of charge, to its annihilation by an element
with the epposite sign. We could, in principle, label
each mique element with an identity tag which il

" would mever lose. Mass and charge, thus, have
identical conscrvation properties, zpart from the Fact
that masses have no elements with opposite sign.

When we look at nonconservation, as manifested by
space and time, we might at first imagine that it is
merely the absence of conservation, but this is not so.
Examination shows that it is the axert opposite of
conservation and it is just as definite a property.
Nonconservation is, in fact, one of the mest mteresting
and important of all physical properties, and it
manifests jtself in many different ways, Thus, just as
the zlements of mass and charge have individual,
specific and permanent identilies, so those of space
and tine have no identity whatsoever, and this fact has
o be incorporated directly into physics ar all levels,
We refer, for example, to the property of transiation
symmetry for both space and time. This means that
every element of space and time is exactly like every
other, and is not only indistingnishable in practice, but
must be stated to be indistinguishable when we write
down physical equations. And this translation
symmetry is not an insignificant philosophical
concept; it is responsible for two of the great laws of
nziure, for Noether's theorem shows us that the
translation symmeltry of time is precisely identical 10

- the conservation of energy, and that the translation

symmeay of space is precisely identical to the
conservation of linear momentur,

Space, in addition, because it is three-dimensional,
also has rotation symmetry; this means that there is no
idenrity, sither, for spatial direcrions. In additon w
having no unique elements, space also lacks a unique
set of dimensions. One directicn in space is identical
to any other; this is the fact that is responsible for

-space’s famous affine structure, the infinite number of

possible resolutions of a wvector into dimensional
components, Space rotation symmetry is a very
important property and we will retum to it later.
Noether's theorem shows that jt is exactly the same
thing as the conservation of angular momentsm.

The exactly .opposne nature of conservation and
noncenservation could be illustrated by expressing the
identity or uniqueness properties of mass and charge
in terms of ‘translation’ asymmetries. Translation
asymmetry then means that one element of mass or
charge canpot be “translated to” (or exchanged for) any
other within a system, however simnilar.

“But trenslaticn and rotation syrmmetry are not the only

manifestations of nonconservation in space and time.
The whole of physics is based on defining systems in
which conserved quantities remain fixed while
noncenserved quantities vary absolutely. A conserved
quantity can only be defined with respect to changes in
a nonconserved guantity. In effect, we lock at how
mass and charge, and such quaniites as energy,
momentum, force or action remain constani, or Zero,
or & maximum or a minimor, because of the more
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fundamental requirements involving mass and charge,
while the space and time coordinates alter arbitrarily.
The alteration of space and time is expressed by

- describing them in terms of differentials. The very fact

thal we have based physics on differential equations
and the definition of systems invelving conservation
requirements is an expression of the presence of both
absolutely conserved and absolutely nonconserved
terms in nature.

The absoluteness of the nonconservation properties is
menifested in the gauge invarience used in both
classical and quantum physics. In classical or quantum
electrodynamics, electric and magnetic fields terms
remain invariant under arbitrary changes in the vector
and scalar potentials, or phase changes in the quantum
mechanical wavefunction, bronglit aboul, essentially,
by translations (or rotations) in the space and time
coordinates. Gaoge invariance tells us, in effect, that a
system will remain conservalive under arbitrary
changes in the coordinates which do net produce
changes in the values of conserved quantities such as
charge, energy, momentum and angular momentum.
In other words, we cannot know the absolute phase or

" value of potential because we cannot choose to fix

values of coordinates which are subject to absolnte and
arbitrary change. Ever more significantly, in the
Yang-Mills principle used in particle physics, the
arbitrary phase changes are specifically local, Tather
than global. Nonconservation, therefore, must be local
in exactly the same way as conservation.

3 Real and imaginary: space and mass versus fime
and charge

Now, space and time are alike ja their
nonconservation, but we know that there must be
fundamentat differences between them; otherwise, they
would be indistinguishable. One such distinction is
evident in the very mathematical combination which
produces four-dimensional space-time. This is the fact
that, while Pythagorean addition produces positve
values for the squares of the thres spatial dimensions,
the squared value of time becomes negative. A
convenient way to represent time, then, is by an
imaginary number, as in the Minkowskt space-time 4-
vector used in relativity. This, of course, does not
make time ‘imaginary’ in itself; bot it is impertant for
us to ask why this particnlar ‘trick’ actnally works. Tt
is not really adequate to desctibe it as a ‘convenience’
without explaining why it is convenient. One
interesting fact is that an imaginary representation
would also make uniform velocity imaginary, whils
acceleration would remain real.

To try to get beyond the facile explanation that the
trick is geod because 1t works, we should see if we can

learn anything relevant from the representation of
mass and charge Here, we have the inwiguing fact,
long known but never explained, that forces berween
like masses are aftractive, whereas forces between like
(electric) charges are repulsive; that is, the forces
between like masses and like charges have opposite
signs. Now, the force laws effectively square mass and
charge terms, in the same way as space and time terms
are squared in Pythagorean addition. Suppose, then,
that we choose to represent charges by imaginary
numbers and masses by reai ones (figure 1), Such a
procedure would be just as valid as vsing imaginary
values of time when adding it to space.
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Figure 1. Symmetrical representation of Mewion and

Coulomb force laws using imaginary numbers for
charges.

F=

In addition, of course, the other two forces — the strong
and wezk interactions — are like the electromagnetic in
being repulsive for like particles, and so the source
terms for these forces would also presumably be
defined by imaginary numbers. But the three types of
source weuld have to be distinguished from each other
in some way. And here we have a stroke of luck, for
the mathematics required for such a situation is
already available and has been well-known for a
hundred and fifty years. This is the guaternion system,
discovered by Hamilton in 1843, in which i, § and k,
the three square roots of -1, are related by the
formulae:
2o =lejl=-].

For - historical reasons, guaternions became a
proscribed concept at the end of the nineteenth cenlury

— they were not the kind of mathemarics that .

respectable physicists nsed — and many people siill
think they are incredibly difficult or esoteric; but, in
fact, they are remarkably easy to use, being just the
reverse of the 4-vectors nsed in Minkowski space-time:
three imaginary parts and one rezl (ordinary real
numbers), as opposed to three real parts and one
imaginary. But the real significance of quaiernions is
that they are unique. As Frobenivs proved in 1878, no
other extension of ordinary complex algebra invelving
imaginary dimensions is possible: if we rtequire a
dirnensicnal imaginary algebra (as the source terms for
the electromagnetic, streng and weak interactions
suggest we might) then we have only one possible
choice — an algebra based on cne real part and three
maginary.!
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Hamilton discovered the quaternions after finding that
a systemn with two [maginary pasts was impossible,
and, almost immediately, he felt that he was on to the
true explapation of 3-dimensional space, wilh time
taking up the fourth or real part. By cur analysis, it
would be more convenient to apply them to the three
imaginary components of charge, with mass taking up
the real part. However, space and time would then
become a three real- and one imaginary-part system by
symmetry, In this sense, the three components of
charge (say, fe, js, kw) could be comsidered as the
‘dimensions’ of a single charge parameter, with their
squared values used in the caleulation of forces added,
in the same way as the three parts of space, by
Pythagorean addition (figure 2).
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Fignre 2. Symmertical representation of 4-vector
space-time and quaternion mass-charge.

It is here that we can now return to the subject of the
rotation symmeltry of space. If charge, like space, is a
three-dimensional  parameter, then we need 10
investigate how the dimensions behave with respect to
each other. Immediately, we should expect a differ=nce
from space, since charge is a conserved quantity. In
fact, we should expect conservation in dimension as
well as in quanlity; in principle, charge should exhibit
rotation asymmetry. That is, the sources of the
eleclromagnetic, weak and strong interacttons should
be separately conserved, and incapable of
interconversion. Immediately, this should tell us thar
the proton, which has 2 strong charge measured by its
baryon number, cannot decay to producis like the
positron and neutral pion, which have none. Altention
10 basics here would require the separate conservation
of the three charges to be built into Grand Unified
Theories. Particle theorists have been puzzled as to
why the proton does not decay; but basic reasoning
suggests that there may be an answer. (The Weinberg-
Salam unification of electromagnetic and weak forces
is not, of cowse, affected because this theory is a
statement of the identity of effect in the two
interaclions, under ideal conditions, not of identity of
the sources; the three quaternion operators i, j and k
are different sources, though identical in effect.) In
addition, separate conservation laws would easily lead
to baryon znd lepton conservation, baryons being the
only particles with strong, as well as weak,
components, and Jeptons being the only particles with
weak, but no strong, camponents.

In view of such advantages in applying an imaginary
representation to the three types of charge, we may be
inclined to ask if there is any further benefit; and, in
fact, there is, for imaginary numbers have yet another
impertant property. This is the fact that equal
répresentation must be given to positive and negative
values of fimaginary quantities. Unlike real pumbers,
imaginary ones aflow neither positive nor negative
values 10 be privileged in algebraic equations. In other
words, every equation which has a positive solution
also has an algebraically indistinguishable negative
sclution (the complex conjugate). Thus, all our
charges (but not necessarily masses) must exist in both
positive and negative states. This is the precise
requirement for the existence of antiparticles; even
those particles, such as the neutron and neutrino,
which have no electric charge still have antiparticles
because they have strong and/or weak charges whose
signs may e changed (under the process of charge
conjugation, already mentioned).

4 Divisible and indivisible: space and charge versus
time and mass

Now space is like time in being nonconserved, like
mass in being real, and, apparently, like charge in
being dimensional. Dimensionality, however, doesn’t
really Iook like a basic property. Is there any basic
praperty which explains it? It seems to me very
probable that there is, and, in looking at this question,
it will be necessary once more Io examine the
relationship between space and time.

- Space and time have often been assumed to be alike in

most respects, but there is good evidence that they are
fundamentally different, Space, for example, is always
used in direct measurement; n fact, it is impossible ta
measure anything but space. Our ‘time’-measuring
devices, such as pendulums, mechanical clocks, and
erystal and atomnic oscillators, all use some concept of
repstition of a spatial interval. Special conditions have
to be used to set up such measntements, whereas any
object whatsoever can be used 1o measure space. Space
also is reversible - and it is this reversibility which is
used in the measurement of time — but time is not.

Perhaps, we might find it convenient here to go back a
couple of millennia and look at the famous paradoxes
of Zeno of Elea. Of course, many people think these
have been answered by the use of limits or infinite
series, but Whitrow, who has made the most extensive
and influential recent study, thinks otherwise.? In the
well-known argument ahout the race between Achilles
and the Tortoise, Achilles, in any number of time
inlervals, should never catch up with the Tortoise, to
whom he has given a lead, because, each time he
thinks he has caught up, he finds the Tortoise has
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already moved further ahead, even if only by an ever
smaller amount. Another exampie is the Dichotomy
Paradex, in which en object moving over any distance
can never gel started becavse it must cover half the
distance before it covers the whole, and a quarter of
the distance before it covers half, and so on; o go any
distance in a finite amount of time, it must slready
have been involved in an infintte number of
operations.

The problem seems to be the infinite divisibility of
time; Achilles, for example, never catches the Tortoise
because we have assumed that the time for the race can
be divided up into finite intervals. On the basis of
these, and similar paradoxes, Whittow wrtes. “Ons
can, therefore, conclude that the idea of the infinite
divisibility of time must be rejected, or ., one must
recognize that it is ... a logical fiction.’* And the more
recent anthors, Peter Covency and Roger Highfield
conclude that: ‘Either one can seek to deny the notion
of 'becoming’, in which case time assumes essentially
space-like properties; or one must reject the asumption
that time, like space, is infinitely divisible into ever
smaller portions.’* The paradoxes seem to show,
according to Whitrow, that motion is ‘impossible i
time (and, comelatively, space) is divisible ad
infiniturn’ *

Zeno's paradoxes are oot just sophisiry; Bertrand
Russell considered them ‘immeasurably subtle and
profound’, and A. N. Whitehead thought that they
showed an “instant of time’ to be ‘nonsense’.S Our
reason for including them here is to show that there is
good evidence that one cannot simply assume that time
can be indefinitely subdivided Jike space. There is
every reason to believe, in fact, that time, unlike space,
is an absolute continuum. There iz no infinite
succession of measurable instanis in time, as supposed
in the paradoxes, becanse there are no instants, Time
cannot actually be divided. To use a more
contemporary jargon, space is digital, time is analogue
— and we have both concepts in nature because we
have both parameters.”

Continnity is a word with many meanings, and
different uses of the word have caused confusion. The
‘continuity” attributed to space becanse of its indefinite
divisibility is not what is meent by the ahsolute
continuity of time. Absolute continuity cannot be
visualised and any process used to describe it wonld
deny continuity. The property which space has that Is
often referred to as ‘contmuity’ is indefinite elasticity,
its ‘contipual’ recountability or its upending
divisibility. But the very divisibility of space is what
denies il absolute continuity! and the elastic nature of
the divistbility comes from the entirely different
property of nonconservation. We expect 2

nonconserved quantity to have nonfixed units, but they
are units nonetheless. The whole process of
measurement depends crucially on the divisibility of
space, or creation of discontinuities within it. Thus the
entire problem of Zeno's paradoxes disappears as soon
as we accepl that we can have discontinuities or
divisibility in space, but not in time

Space can be discontinuous in both quantity and
direction; it can be reversed and changed in
orientation; and, without both of these properties,
measurement would be fmpossible. Time, however,
cannot be reversed, precisely because it is absolutely
continnous. Any reversal of time would require
discontinuity. For the same reason, time cannot be
multidimensional, or, in our terminology,
‘dimensional’. The same distinction occcurs between
mass and charge. Mass is an absolute continunm
present in all systemns and at every point in space (if
only in the form of fields and energy); this is why
there is no negative mass, for negative mass would
necessarily require a break in the continnum. Charge,
on the other hand, is divisible and observed in ugits; of
course, because charge is a conserved guantity, unlike
space, these units must be fixed, unlike those of space.
Again, charge as a noncontinugus quanlity is also
dimensional, and, thus we might suggest divisibility as
the ‘cause’ of dimensionality. Though we cannnot
casily prove that divisibility canses dimensionality, we
can at least see why absolately continuous gquantities
are hondimensional.

One often 1eads, of course, about a ‘reversibility
peradox”, where time, according to the laws of physics
is reversible in mathemarical sign, when it is clearly
not reversible in physical consequences. Time,
however, we need to remember, is characterised by
imaginary numbers, and imaginary numbers are not
privileged accarding to sign. Thus, it is quite possible
to have a time which has equal positive and negative
mathematical solutions because it is imaginary, but
which has only one physical direction because it is
continuous. (The corresponding unipolarity, or single
sign, of mass is the reason why we have a CPT, rather
than an MCPT, theorem, C standing for charge
conjugation, P for space reflection and T for rfime
reversal, all of which have two mathematical sign
options.)

The distinction between space and time has many
interesting consequences. In prnciple, when we
mathematically combine space and time in
Minkowski's 4-vector, as symmetry apparentdy
requires us to do, we have two options: we can either
make time space-like (or discrete) or space time-like
(or continnous). This seems to be the origin of wave-
pariicte duality. The discrete options lead to particles,
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special  relativity and  Heisenberg’s  quanturn
mechanics. The continnous options lead to waves,
Lorentzian relativity and Schrodinger's wave
mechanics. Heisenberg makes everyihing discrets, so
mass becomes charge-like quanta in guantum
mechanics; Schridinger, on the other hand, makes
everything continuous, so charge becomes mass-like
wavefunctions in wave mechanics. In measurement,
the true sitwations are restored, for Heisenberg
reintroduces continuous mass via the uncertainty
principle 2nd the virtual vacuum, while Schridinger
reintroduces discrete charge via the collapse of the
wavefunciion,®

Another aspect of the distinction between space and
time occurs in the fandamental fact that time, in the
definition of velocity and acceleration, the basic
quantties used in dynamics, is the independent
variable, whereas space is the dependent variablz. This
sitnation arises’ because time, vnlike space, is not
susceptible to measurement. We have no conirol over
the vartation of time, and so its variation is necessarily
independent.

The fundamental distincuon belween the status of
space and time almost cerfainly also has relevance in
mathematics. In the seventeemh century, there were
two processes of differentiation: the discrete (or
Leibniziar), essentially modelled on varjation im
space; grd the continucus (or Newtonian), essentially
modelled on variarion in time. Like particles and
waves, each s a valid option, for differentiation is a
property liked to nonconservation, and not
concerned, in principle, with the difference between
absclute coptinuity and indefinite divisibility. {The
solutions of Zeno's paradoxes that invoke the concept
of limi: tacitly assume the Newtonian definition of
differentiation.) Again, it is probable that the
Cantorian definjtion of an absolutely continuous set of
real numbers has equal validity with the idea of an
infinitely constructible, though not absolutety
continuous, set of real numbers based on algorithmic
processes,” The ' mathematical options that are
available, here and elsewhere, are almost certainly a
reflection of the availability of physical options.
Continuity and discontinuity, finiteness and infinity,
and 50 on, probably exist as mathematical categories
because they are also physical categories.

5 A group of order 4

From what e have sesn, them, the four basic
parameters seem to be distributed between three sets of
opposing  paired categories: real / imaginary,
coenserved / nonconserved, divisible / indivisible, with
each parameter paired off with a different partner in
each of the categories:

space  real nonconserved  divisibie

time  imaginary nonconserved indivisible

mass  real conserved ndivisible

charge imaginary conserved divisible

The properties where they malch, seem to be exactly
identical, and where they oppose, to be in exact
opposition. (Certain ropresentations, however, like the
Dirac eguation involve mathematical reversels of
physical properties, the Lorentz-invariant structure
demanding either timelike space or spacelike time,
with corresponding reversals in the properties of mass
or charge.) Mathematically, this scheme incorporates
a group of order 4, in which any parameter can be the
identity element and each is its own inverse.!?

An algebraic representation is easily accomplished by
representing  the properties of space  (real,
nonconserved, divisible) by, say, a, b, ¢, with the
opposing  properties  (imaginary,  conserved,
indivisible) represented by —a, —b, —c. The group
now becomes:

space a b [
time -a b —c
mass o —b —
charge —z —b ¢

With group mulriplication rules of the form:

ata=—a¥-~—a=a
g¢*—g=—a*q=—a
a*tb=g*—h=0(

and similatly for & and ¢, we can establish & group
multiplicaticn table of the form:

* space time ASS charge
space space lime mass charge
time time space charge mass
mass mass charge space time
charge charge mass time space

This is the characteristic multiplication 1able of the
Klein-4 group, with space as the identity element and
each elernent its own inverse. However, there is no
reason to privilege space with respect io the other
parameters, since the symbols @ and —a, b and -5, ¢
and —¢ are arbitrarily selected, and any of the other
Three parameters may be made the tdentity by defining
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its properties as a, b, c. For example, if mass is made
the identity element, then the group properties may be
represenied by:

space a4 -5 -
time: —a -5 c
mass a b c
charge —~a b —¢

and the multiplicaticn table becomes:

* mass charge time space
mass mass charpe | time space .
time - | Bme Dass space iime
charge charge space mass charge
space space . | time charge mass

Various further representations are possible, and seem
10 be relevant, in particular, to the mathematical
structure of the Dirac equation. For example, the
identity element, say mass, could be represented by the
scelar part of a guaternion (I) and the other three
terms by the imaginary operators €, f, k, with the + ang
— values completing the {now cyclic) quaternion gronp
structure.

* M iC iT kS

1M M iC JT kS
iC iC —IM kS <T
JT JT &S -1M —iC
kS kS JT ic —-IM

It is important to recognise here that the quaternion
operators are extrinsically derived and not an integral
component of the parameters space, time, mass and
charge. Though the addition of these operators creates
2 new group structare, this structure is a relation
between new mathernatical constructs and nol between
the parameters themselves; it also presupposes the
validity of the original symmetry between the
parameters

I the 3-dimensionality of charge and space is directly
involved, the overall structure would require 2
quaternion and a 4-vector within another overall
quaternion-type  arrangement. - This  could be
accomplished usig an  octonian, with sixtesn
members (tlm, fis, He, Tow, det, £, fpy, Hh2),
though this Is no longer a group. The nonassociativity
of the dimensional terms in the oclonian extension
seems to be lost within terms which effectively cancel
each other out, and are of no physical significance.

If charge is taken as the identity elememt, and is
represented by a scalar, the remaining steucture for
time, space and mass (and, implicitly, the energy,
momentom and mass operators) becomes that of the
Dirac algebra and SU(5)." Such representations do
not determine the properties of space, time, mass and
charge. They exist because the proup has four
components, and can, therefore, be represented by a 4-
component structure like quaternions, in which the
link between elements is made by a binary operation
(squaring); but the link between a group with four
components and a 4-dirnensional space-time or mass-
charge may be in itself significant.

Using the postulated group as 2 working hypothesis, it
becomes possible to explore possibie constraints on the
laws of physics, as a result of group properties (as is
shown below), Another area to be investigated might
be the way in which the relationship between the
qualernion represenlation and the requirement of
separate conservation for charges might affect the
fundamental particle structures that are possible.'

6 Scaling relations

The group elements arz required to be their own
inverses, and fo be each identities. In addition, the
groep  multiplication  rule (when all possible
arrangements are taken into consideration) requires:

charge* time = space* mass ,

A binary operation which makss this possible is the
squared multiplication of umits, such as already exists
for space and time in the 4-vector combination and for
mass and charse when they are combined in a
quaternion. It is also inherent 1o the description of
charge, time, space and mass as, respectively,
quaternion (or possibly pseudovector), pseudoscalar,
vector and scalar, that the units of their squared
quantities must be comparable numerically. To create
the necessary nurnber of independent fundamental
relationships, we need to define three scaling constants
(or rather scaling parameters, since they need not be
actually constant if they are known to vary according
to some fixed role). And since the system has inherent
duality in making each quamity its own inverse, then
we must define a relation between each quantity and
the inverse of every other, for which one further
scaling constant (or parameter) will suffice.1

The group relationship predicts that such fundamental
constants tnust exist, while effectively ensuring that
their individual values have no independent meaning.
To relate these to familiar scales of measurement, we
create them from combinations of the four historically-
generated fundamental constants G, ¢, 4 (or h | 2m),




47eo. (Here, for convenience, we assuine that ‘charge’
has the electromagnefic value, though this is not a
necessary assumption, and a grand vnified value could
be used instead; the actual ‘values’ of the constants are
not particularly significant — only the fact thal some
such scaling must exist.)

We can now express the scaling relations between the
units of space (r), time (1), mass (m}, and charge (g) as
follows (with the equality sign being interpreted as
meaning ‘equivalence’):

r=ict 1)
G

r=5m (2)

ig = (dneoG)'2 m 3

The respective imaginary and quaternion operasors
required by £ and g are significant in determining the
signs of their squared units. These operators are
normally subsumed within the symbols ¢ and g, hut
here they are added for emphasis

The further relations between any parameter and the
inverse of any other can all be desived from:
Bl

m=7 (€]

This last result is the one that we recognise as being
responsible for quantization of energy and other
physical properties. Quantizatien could thus be said to
be a result of the fact that each parameter is its own
inverse. Quantization and duality of scals are aspects
of the same phenomenon.

The four independent scaling constants in the above
scheme become ¢, (G / 2, (4negG)?, and (h / &%)
These are merely the scaling relations between the
units of each quantity, but the presence of <2 and A
informs us that these quantities are fundamental to
rhysics, whether classical, relativistic or quantum. In
principle, any term related to another by a scaling
relation in a meaningful physical equation can be
replaced by that term to preduce another meaningful
equation.

A significant aspect of the binary operation between
parameters is the squaring of the units of each, or the
multiplication of a wnit of amy parameter by an
identically-valued umit of the same paramerer. Now,
units of mass and charge have individoal identities,
unlike those of space and time, and so the 'squaring’
of their units becomes Lhe multiplication of individual
units, such as mym,; and 4,4,, and such ‘squaring’
must be a universal operation between any umits of
mass and charge, no individual unit being privileged.

It will be convenient to give this process the name of

‘interaction”."*

7 Constructed guantities

The mest fundamental laws of physics are essensially
definitions and  comservation laws. Classical
mechanics, for example, is strugtured on only mwo
fundamental requirements: the construction of a
quantity involving conserved and nonconserved
parameters  (force, epergy, momentum, action,
Lagrangian, Hamiltonian) and the definition of its
behaviour under variation of the variable components,
that is, whether it is defined to be zero, jnvariant, or an
extremun. Essentially, the laws of classical mechanics
are set up to define what is meant by a conservative
system,

Now, the key concepts in classical mechanics (as in
other aspects of physics) are those which combine the
minimum information necessary to dishnguish the
conserved and nonconserved parameters, Of the
conserved guantities, mass is universal and never zera,
and therefore must be present; charge, however, is
local, and can take zero values. To specify the
conservation or invariability of mass, we also need to
specify the nonconservation or variability of space and
time; hence, these parameters are included in
differential form. A convenient way to define a system,
therefore, would be the construction of a quantity
containing mass and the differentials of space and
time. The most immediately vseful constructs then
inclnde p = m dr ! dit and F = dp { dir {(with time, most
conveniently specified s the independent variable).
The second quantity, as has been previously explained,
has the advantage of producing a rea] rather than an
imaginary construct. Now, space, of course, is really a
vector (neglecting, for the moment, any 4-vector
aspects); to incorporate this aspect, we may multipy
both terms by the unit vector r / r, to yield the familiar
quantities, momentum,

-
P g
and force, _ dp
Tdir -
(Imaginary and quaternion labels are retained here for
emphasis bul would not, of course, normally be used.)

The definitions of such quantities are, as yet, purely
mathemnatical and convey no addirional physical
information. This can now be supplied, however, by
using the scaling relations to find other quantities lo
which these defined ones can be related, while at the
same time applying the conditions for conservation
and nonconservation. This enables us w Sef wp a
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system of equations for classical mechanics and
electromagnetic theory.

8§ Classical mechanics

From (2) and (3), remembering thal each element of
mass is unique, we may derive the expression

r
Gmum;=h i

In differential form, under the specific conservation of
mass elements, 4
-
Gy =h T
from which
Gy __dr
i T Mair TP

The mass term on the right hand side, of course, is a
new mass unit, distingnishable from my and m,.

By differentiation, and a further substitution,
Gmymy _ Gmima _ dp

T2 TT 2 Tdire
Applying the unit vector, r/ r, this becomes
Grrymy dp
# TTdie
which’is a combination of Newton's law of gravitation
and second law of motien, with the left hand side a

new equivalent guantity for force, conventionally
described as gravitational foree.

Neither s, nor my is, of course, privileged, and so the
equation can also be written in the form:
Gmgmy  dp
T
Interpreting the vectors T and p as directed from m to
m, means that reversing the mass terms produces

reversed vectors, from m, to my, as required by
Newton’s third law of motion.

The equivalent case for charges defines Coulomb’s Jaw
of electrostatics and fntroduces electrastatic force
(with the opposite sign, and hence reversed vector, for
identically valued charges):

@99z _dp
ameg T dir

All the other significant and relations of classical
mechanics, in any of its forms, can be derived now by
purely malbematical manipulation. For example,
nterpreting a ‘system’ to mezan any combination of unit
masses, the conservation of memenmm foliows by
imegration of the total force over time, and the

conservalion of angular momentumn (L = r x p) from
the fact that dp / dt in a conservative system is zero.

Direct manipulation of the scaling relations reveals
that momenturh terms are equivalent to mcr / r, and
that scelar terms of the form Griygmy [ r and qugz /
ditegr, which we may describe as gravitational and
electrostatic petential energies, ate equvalent to those
of the form mc? in each of these cases, m may be
described 25 an ‘equivalent mass’. Though these
results normally emerge only from relativity theory,
they are actually inherent in the structure from which
classical mechanics must be derived.

Further results follow from on immediately from the
mathematical definition of new concepts. Thus,
defining velocity as v = dr / dif and acceleration as a
=dv / dit, and field intensity as F / m, we have, in the
case of constant mass, F = ma, and can define
gravitational field intensity as

Gm

g=-"5
and electrostatic field intensity as

_ _ig
E= P r.

From vector theory, we can show that, for the related
sealar potentials, § = ~ Gm [ rand & = —iq / 4meor,

E=-V¢

E=-Vo,

and

and, also, that the respective force laws are equivalent
to the Laplace equations

-Vi%=Vg=0
and

_V%4=VE=0,

in a space without sources, and to the Poisson
equations,

~ Vi =V.g=4npG
and

-V%=V.E=p/eq,

in a space with them. None of this requires any new
physical argument.

9 Classical electromagnetic theory

To replace nonrelativistic equations with relativistic
ones, we simply replace all vector terms with 4-
vectors, I, for example, being replaced by (r, ic?). This
procedure can be done, of course, with purely
mechanical equations, to generate the standard results
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of special relanivity, hut it is particularly significant in
classical electromagnetic Lheory, which follows on
immediately from applying 4-vector terms to the
definition of electrostatic force.

The significamt fact here is that charge is locally
conserved, and, hence, by a standard argument, the
continuity equation,

%%+V.j=[],

must apply, with p defined as the charge density and j
= p v as the current density. The differential operator
in this equation is a 4-vector, and so, recognisably, is
the quantity with scalar and vector parts, pand j / ¢.

Now, the scalar part of ihis latler quantity appears in
Poisson's equation,

~Vi=pleg,

which is the differential form of Coulomb’s law, and
so we should expect to find an equivalent vector par
(A /¢) for ¢, and an equivalent scalar part {— (I / ¢%)
0%/ 3f) for V2 Since the new differentizl operator 0 =
(17 3%/ 3 — V¥ is'itself 2 universal scalar, we
may separate out the scalar and vector parts of the fotal
equation Lo give the wave eguations:

Og=pleg
and

CA=jle

It is significant that ¢ and A are arbitrary to the point
where they satisfy these equations (the condition of
gange invariance, as previously discussed unnder
nonconservation). For convenience, we can arbitrarily
restrict the values using a gauge condition. If we
choose the so-called Lorentz gauge, in which

a¢
5t v.A=0,
and define new vectors B and B, without reference o
physical characteristics, such that

dA
E=-Vo+5~
and dt
B:VXA,

we obtain the four Maxwell equations in their standard
form, and identify E as the electrostatic field vector.'S

10 Conservation laws ami fmdamental s:vmmetries
The outline derivations of classical mechanics and

electromagnetic theory show that the sroup structure
of space, time, mass and charge has the power lo

derive conventional results in a telatively simplified
form. Numercus new mathematical resolts can be
generated by even more direct uses of the symmeiries.
As previously nated, Noether’s theorem requires the
tramslation symmetry of time to be linked to the
conservation of energy. OF course, since energy is
related to mass by the equation £ = mc? then the
ranslation symmetry of tme is also linked to the
conservation of mass. To put it another way, the
nonconservation of ftime is responsible for the
conservation of mass. This is a resuit we could have
derived from symmetry alone; and so, extending the
analogy, we could link the conservation of the quantity
of charge with the noncenservation, or iranslation
symmetry of space; and since the latter is already
linked with the conservation of linear momentum, we
could propose a theorem in which the conservation of
linear momenturn was responsible for the conservation
of the quantity of charge (of any type). By the same
Xind of reasoning, we could make the conservation of
type of charge linked to the rotation symmetry of
space, and so to the conservation of angular
momentum, as in the following scheme:

symmetry conserved  linked
quantity conservation

space linear value of
translation momentum  charge

time energy value of
translation mass

space angular type of
Totation momentim  charge

In fact, we can already show these princip‘les 10 be true
in special cases. As Fritz London showed in 1927, the
conservation of eleciric charge within a system is

jdentical to invariance under transformations of the..

electrostatic potential by a constant representing
changes of phase, and the phase changes are of the
kind involved in the conservation of linear
momentm. Since, in a conservative system,
elecuostatic potential varies only with the spatial
coordinates, this is, in effect, a statement of the
principle that the quantity. of electric charge is
conserved because the spatial coordinates are not,
which is a special case of the first predicted relation.

In the second case, ihere s the relation between spin
and statistics observed in fundamental particles.
Fermions and bosons have different values of spin
angular momentum; and they also differ in that
fermions probably carry weak units of charge, where
bosens have nene. It thus appears 1o be the presence of
a particular fype of charge which determines the
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angular momentum  state  of the particle, so
conservation of this type of charge is linked with the
value of angular momentum.

11 The Dirac equation

Yet another significant mathematical resull follows
from the basic representations of 4-vector space-time
and guaternion mass-charge. A direct combination of
these two constructs, pulting the four parameters onto
an equal overall footing in a single mathematical
representation, .prodoces a 32-part algebra which is
identical tn all respects 1o the 32-part algebra used in
the Dirac equation for the electron, but much simpler
in form and more powerful. (The 32 parts are made up
of 2 complex numbers, 6 complex yectors, 6 complex
quaternions and 18 complex vector quaternions (figure
3); terms equivalent to the five gamma mairices (for
examnple, i, i, I, f, i) are easily derived)’®

2 complex numbers (1.0}
6 complex unit vectors {1,8) % (i,j.k)
6 complex unit quaternions (1,0 % (Eik)

18 complex vector quaternions (1,£) x (i.1.k) % @5.k)

Figure 3. A 32-part algebra produced by combining
4-vectors and quaternions.

Once the Dirac algebra has been established, it is a
relatively easy process to show that the Dirac equation
follows from quantization of a basic classical
conservation equation, and the algebra, in this case,
becomes simplified to a virmally pure quaternion
algebra, as the vector element is removed via 2 scalar
product. We begin with the Lorentz-invariant
relationship between energy, mass and momentum:

Elop—m*=0.
Factorization of this expression requires the use of a
complex and noncommutative  algebra,  viz.
quaternions:

(kE + fip + {fm} (KE + iip + ijm) =0 .
We can also incorporate the factor ¢ &' ~ P
requiring new physical information:

without

(KE + iip + ifm) (kE + iip + fm) ¢ 757 =

In the classical equation, & and p are variables within
the requirement that F* - p” is a constant for fixed m’.
However, gquantization changes the stams of these
terms fo thal, for stationary quantum suales, E and p
become fixed, along with m, The variability now
becomes confined to the space znd time parameters
incorporated into the exponential term, which can now

be seen, physically, w represent the entire group of
space and time translations and rotations.

A more general varfability of space and time can be
incorporated by replacing the factor (KE + iip + ifm)
from the left with the differential operator

(k% +iV + ijm)
acting on the ‘wavefimction’
Y= (kE + iip + ijm) £ 7E PO
producing the expression
(ik%HV +1jm)l;{=0 \ .

which we recognise as the Dirac equation (in a form
already second quantized because the quantization
process has been epplied to both the differental
operator and the wavefonction).!”

It will be recognised that the need for guantization of
E and p comes from the inverse relation between m
and ¢, and that the process has a profound effect on the
classical energy-conservation equation. In quantizing
via the Dirac equation, and, at the same time,
imposing  Lorentz-invariance, we  effectively
restructure the properties of the physical quantities
involved, though our physical interpretation of the
gquantities remains unchanged.’®

In classical relativistic theory, we emphasize the 4-
vector nature of (iF, p) and describe E* — p” as an
invariant, but, here we incorporate the invariance
directly, and define a new term with five components,
(KE + ifp + {jrmt), with quantized resi mass. This 5-
‘dimensicnal’ quantity combines the effects of 3-
dimensional conserved and nonconserved parameters
(the momentum term p having 3 dimensions, although
only one is normally defined). In effect, we structure
mass {or energy-momentum-mass) as a 3-dimensional
gquantized and conserved parameter, like charge {with
one of the “dimensions’ being itself dimensional). This
is the result previously achieved by structuring charge-
mass-space-time as a guaternion, with charge as the
real or identity element.

12 Conclusion

The prediction of new mathematical theorems and the
derivation of new algebraic concepts, as well as the
procedures  for obtaining standard theorems in
classical mechanics, -electromagnetic theory and
quantum mechanics, show that the method of
symmetry based on fundamental basic principles is not
just a philosophical jssue, but also a powerful method
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of generating new results, and of codifying existing
ones. In fact, it is almost inevitable fhat new
discoveries will follow afier any successful exercise in
getting down to the basjcs.
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Abstract

This article shows how, with minimal assumptions, it is possible
to project a gquasi-classical physical space and time out of a uni-
verse of primitive particles. In the limit of very large distances, this
model space and time can be considered to equate with a Machian-
type cosmology within which the inertial properties of the space and
time structure are ‘projected’ from the material content of the uni-
verse. We present this structure as the appropriate physical back-
ground within which thecries of gravitation in the regions of disturb-
ing sources should be constructed.

1 Introduction

Although most reading this article will have a general understanding of
Mach’s Principle, its centrality to our argument makes a short review a
worthwhile investment.

1.1 Mach’s Principle: conventional approach

Briefly, there are two kinds of mass: gravitational mass and inertial mass.
Gravitational mass is what is measured on any kind of weighing machine
{classically a pan-balance, in which the mass-to-be-measured i-s Weighe-d
against a collection of standard masses) whilst inertial mass is what is
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