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Abstract. Physics works because it avoids directly characterizing nature. At the most fundamental level, a 

group symmetry between space, time, mass and charge ensures that every property assumed by a physical 

system is countered by its symmetrical opposite. In this way, we can apply the idea of measurement to 

nature without requiring that nature is characterized by measurability. 

 

1 Introduction 

 

The question I want to attempt to answer here is: why does physics work? Can a 

philosophical approach help us to find the answer, and can we use this to knowledge to 

tackle important physical questions? Can a theory of knowledge be used both to explain 

physics and to suggest possibilities for its future development? Will the much sought-

after unified theory only be possible when we have located the structure which makes 

physics such a uniquely successful means of describing the processes of nature. 

I believe that, to answer these questions, we must look at areas in which physics 

appears to be counter-intuitive. Physics could be described as the science of 

measurement, but its structure does not suggest that it is based on measurement 

convenience. There is, in fact, only one process of measurement known, the counting of 

spatial intervals, using a fixed scale of units defined arbitrarily. All measurements, even 

those supposedly representing other quantities, such as time, are really measurements of 

space. However, no attempt to structure the whole of physics on the basis of space alone 

has been so far successful. Physics seems to demand the existence of other fundamental 

quantities, which cannot be directly measured. The measurement process required by 

physics does not define the whole of nature. 

The fundamental principles of physics have been developed on the basis of a long 

step-by-step process of conceptualizing and testing by experiment. There are theories 

such as classical mechanics, electromagnetic theory and quantum mechanics which have 

a vast range of applicability in describing the processes of nature. It is the requirement 

that the experimental justification must always accompany the theoretical developments 

that has led to their success, but this does not tell us why these particular theoretical 

structures are required by nature. Also, many of the principles used, such as the 

conservation laws and the irreversibility of time, appear to be intrinsically simple, and 

suggest that simpler theories are more likely to be inherently true than complex ones. Is 
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there some more fundamental principle of knowledge which determines these structures 

and which privileges simplicity over complexity? 

 

2 Historical background 

 

It is interesting to look at the historical background of the development of physics as 

we know it today. This began in the late Middle Ages, with the attempt to explain 

processes, such as free fall and uniformly accelerated motion, through defining quantities 

based on the variations of space and time, the most abstract ideas then known, and still 

the only means of observing variation in nature. The theories then developed 

encompassed various states of uniform and nonuniform velocity, and uniform and 

nonuniform acceleration, which were expressed in both mathematical and graphical 

forms. The authors of these theories were not scientists in the modern sense, but 

theologians, more concerned with comprehending the mind of an unknowable God than 

with explaining physical observations. Hence, their explanations were pitched to the 

highest point of abstraction and to the greatest level of simplicity then attainable. 

The success of these mathematical theologians is attributable to the extremism of 

their ideas, their relentless application of Ockham’s Razor resulting in the creation of 

abstract concepts of a universal generality, rather than specific explanations of particular 

physical phenomena, as in the previous Aristotelian model. The method was adopted and 

extended by both Galileo and Newton, who were educated at universities which were still 

mediaeval in outlook, but Newton found it necessary to incorporate a third concept, mass, 

on the same level as space and time, to develop a more general system of dynamics. The 

significance of mass was that it established the principle that fundamental physical laws 

could be built around the fact that some concepts were conserved quantities while others 

were not. The Newtonian procedure also established the fact that the mathematical 

system used to describe fundamental physical laws, based as it was on differential 

equations and an infinite number of interacting particles, was not a direct description of 

nature, but an idealised abstraction which could never be observed in terms of direct 

physical measurements. 

In principle, this separation between observables and the mathematical system 

carries over into quantum mechanics, and is extremely counter-intuitive. Clearly, we have 

not developed the present mathematical structure of physics for convenience, as is often 

maintained; it has rather evolved by natural selection because no other structure will 

work. None of the great abstract theories, such as classical mechanics, electromagnetic 

theory, or quantum mechanics, has been accepted wholeheartedly, even by physicists, as 

a self-evident fundamental truth, precisely because such theories run counter to our 

starting point of structuring the world of nature on direct observation and measurement. 

Yet no theory based on alternative principles has had the slightest success. Also, 
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successful theories of this kind have led to the belief that theories explaining new 

phenomena must be similar in kind, and can be derived by analogy and symmetry. 

This happened after the development of Newtonian mechanics and gravitational 

theory, when a two-hundred-year search for the laws of electricity, magnetism and optics 

was based on the starting assumption that analogies must exist with the Newtonian 

system. Through a long series of experimental and theoretical developments, the analogy 

was eventually successful through the creation of the mass-like parameter charge, and the 

additional component of the relativistic connection of space and time, which was then 

applied, by analogy, to the original Newtonian theory. In more recent times, it has been 

widely assumed that the two new physical forces discovered through radiaoctivity and 

particle physics, the strong and weak interactions, must be in some way analogous to the 

electric force, under ideal conditions; and that some process must exist which breaks an 

otherwise perfect symmetry between the three forces. 

 

3 Symmetry 

 

Symmetry (or analogy) has been the driving force of much of theoretical particle 

physics, as it was, previously, of classical physics, and physicists seem to expect to find 

symmetries in nature. There are many classic theorems which invoke symmetry, for 

example, Noether’s theorem, which allows us to relate the conservation laws of energy, 

momentum and angular momentum to the translation and translation-rotation symmetries 

of time and space. It is this fact which gives us an important clue as to what really makes 

physics work. The other important clue is provided by the fact already stated that the 

work of mediaeval theologians aimed at expressing the unknowability of God has been 

successfully transported into physics and used with the totally different objective of 

describing the natural world in terms of abstract mathematics. 

These clues suggest that the important philosophical principle determining the 

structure of physics is that nature cannot be characterized. It is neither measurable nor 

unmeasurable; and in fact has no single defining characteristic. Any system which 

assumes a special characteristic of any kind limits us to the asymptotic discovery of our 

initial assumption. To create a universally applicable system, we have to avoid any such 

limiting assumption; and to make physics work, we have had to incorporate concepts 

which we would not have chosen on first principles, but which introduce a systematic 

contradiction of our starting assumptions. For example, though we started with space and 

time as variable quantities, we found that nature threw up quantities which we could not 

exclude which turned out to be invariable, such as mass and charge; and, though we 

started by assuming that we could measure everything directly (through space), we 

quickly found that we had to structure physics to incorporate quantities which could not 

be directly measured (time, mass and charge). 
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The in-built procedure which allows us to have these opposite characteristics within 

the same system is symmetry. If we apply a perfectly symmetrical structure to the 

explanation of nature, we ensure that, whatever characteristic we choose in one part of 

the system will be countered by its exactly symmetrical opposite in another. Symmetry 

thus allows us to do the apparently impossible, that it is to characterize nature using a 

measurement process (because the system as a whole is not measurable), while, at the 

same time allowing us to reduce our number of fundamental assumptions. By a process 

of choosing the only methodology which produces a match with experimental results, we 

have adopted a structure for physics which is perfectly symmetrical in its foundations, 

though we have not yet recognized this fact. However, if we do begin to recognize it, we 

will be able to design new physics according to the specifications which have, in this 

way, been forced upon us. 

But what symmetry? There are many in physics, and we must decide which are the 

most important and fundamental. I will argue that there are just four basic parameters and 

that we can use such techniques as dimensional analysis to show that all other physical 

parameters arise from compounded versions of these elementary ones. We can also show 

that it is precisely these parameters which are assumed to be the elementary ones in the 

statement of the CPT theorem. It is perhaps slightly surprising that physicists have been 

so often prepared to tackle fundamental questions without taking proper account of these 

basic ideas. Although we can’t hope to analyse really basic ideas, we can learn a great 

deal by setting one off against the other. It would surely be profitable to examine the 

properties of these parameters as closely as possible and look for patterns, or symmetries 

of one sort or another, that would help to clarify their meaning and uses. Symmetry has 

been such a powerful tool in understanding particle physics and the fundamental 

interactions that we have every reason to expect to find it here. 

The symmetry which I believe to underlie all the other symmetries in physics is that 

between the fundamental parameters space, time, mass and charge (where charge is a 

general term representing the sources of the three nongravitational interactions). 

Essentially, space is characterized by the properties required of a parameter of 

measurement: it is real, nonconserved, and countable. Nature, however, forces us to 

include, at the same level within our system, parameters which have directly opposing 

properties. These turn out to be those which we describe as time, mass and charge; and 

the symmetry between the four parameters appears to be absolute and representable in 

terms of a group structure. Classical mechanics, electrodynamics, relativity, quantum 

mechanics, and particle physics, can be accommodated within this structure. Many 

theorems can be established as consequences of the emerging symmetrical pattern; and 

new physical facts can be predicted, even in quantitative terms. The structure is at once 

more simple and powerful than any of the principles derived from it. 
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4 The meaning of the conservation laws 

 

One of the most important aspects of Newtonian physics is its introduction of the 

parameter mass on the same fundamental level as space and time. Introducing mass also 

introduces the idea of conservation, which can be described in absolute terms, and leads 

to a whole series of conservation principles, which are invariably the bases of dynamical 

systems. Physical equations then become statements that one quantity is conserved while 

another is not. So, the conserved property of mass also shows up the contrasting, 

nonconserved natures of space and time, which are incorporated into physics in the 

differential forms with which these quantities are associated in fundamental equations. 

In Newton’s original formulation, the quantity force was defined as a product of the 

conserved mass and the differential forms of the nonconserved space and time, and the 

conservation property of mass was then established through the third law of motion, 

which effectively stated that force was zero within a conservative system. The method 

was powerful because it was extreme. It had to be true in all cases. Later versions of 

dynamics, associated with Euler, Maupertuis, Lagrange, and Hamilton, were structured 

on exactly the same pattern: a quantity was defined which incorporated mass and the 

differentials of space and time, and was then shown to be subject to extreme behaviour. 

The quantity was set to zero, or a constant value, or a maximum or minimum. And the 

extremum principles so derived, in particular the conservation laws of linear momentum, 

angular momentum and energy, were, in principle, nothing other than the fact that mass 

was conserved against all possible variations in space and time. 

Subsequent developments in electrodynamics suggested that electric charge had 

precisely the same property. The conservation laws of mass and electric charge are 

among the most fundamental in physics (although we now, of course, interpret the 

meaning of ‘mass’ in terms of energy), and it is almost inconceivable to imagine any 

circumstance in which they would be violated. Again, it is almost certain that some kind 

of conservation law applies also to the sources of the weak and strong nuclear 

interactions, which have in the last two decades increasingly been referred to under the 

same generic label of ‘charge’. Lepton and baryon conservation are obvious 

consequences. Of particular importance is the fact that the conservation laws of mass and 

charge are not merely global, applying to the total amount of each quantity in the 

universe, but also local, applying to the amount of each quantity at a given place in a 

given time. Each element of mass and charge has, it would seem, an identity which it 

retains throughout all interactions, subject only, in the case of charge, to its annihilation 

by an element with the opposite sign. 

Strikingly, when we look at nonconservation, as manifested by space and time, we 

immediately see that it is the exact opposite of conservation and it is just as definite a 

property, though it manifests itself in many different ways. For example, if the elements 

of mass and charge have individual, specific and permanent identities, those of space and 
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time have no identity whatsoever. One manifestation of this is the property of translation 

symmetry which applies to both space and time. This implies that every element of space 

and time is exactly like every other, and is not only indistinguishable in practice, but must 

be stated to be indistinguishable when we write down physical equations. The translation 

property has profound physical consequences, as Noether’s theorem shows us that the 

translation symmetry of time is precisely identical to the conservation of energy, and that 

the translation symmetry of space is precisely identical to the conservation of linear 

momentum. The third conservation principle, that of angular momentum, is explained by 

Noether’s theorem as a result of space’s extra three-dimensional property of rotation 

symmetry, meaning that there is no more identity for spatial directions than there is for 

spatial locations. In addition to having no unique elements, space also lacks a unique set 

of dimensions. One direction in space is identical to any other. 

The meaning of the conservation laws now becomes more apparent. They are not 

only the absolute defining principles of all aspects of fundamental physics, but must also 

be accompanied by absolute nonconservation principles. We could, in fact, illustrate the 

exactly opposite nature of conservation and nonconservation by expressing the identity or 

uniqueness properties of mass and charge in terms of ‘translation’ asymmetries. 

Translation asymmetry then means that one element of mass or charge cannot be 

‘translated to’ (or exchanged for) any other within a system, however similar. A similar 

concept of rotation asymmetry might be expected to apply to charge, but we will return to 

this later. 

But there are also other manifestations of nonconservation in space and time. The 

absoluteness of the nonconservation properties is also apparent in the gauge invariance 

used in both classical and quantum physics. In classical or quantum electrodynamics, 

electric and magnetic fields terms remain invariant under arbitrary changes in the vector 

and scalar potentials, or phase changes in the quantum mechanical wavefunction, brought 

about, essentially, by translations (or rotations) in the space and time coordinates. Gauge 

invariance is simply a way of expressing the fact that a system will remain conservative 

under arbitrary changes in the coordinates which do not produce changes in the values of 

conserved quantities such as charge, energy, momentum and angular momentum. In other 

words, we cannot know the absolute phase or value of potential because we cannot 

choose to fix values of coordinates which are subject to absolute and arbitrary change. 

Even more significantly, in the Yang-Mills principle used in particle physics, the 

arbitrary phase changes are specifically local, rather than global. Nonconservation, 

therefore, must be local in exactly the same way as conservation. 
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5 The mathematical structure of physical quantities 

 

Ancient knowledge tells us that space is three-dimensional. Three independent 

spatial axes can be drawn at right angles. In other words, the dimensions of space may be 

combined ‘vectorially’, or by the Pythagorean addition of their squared values. Special 

relativity, which emerged from electrodynamics in the early twentieth century, however, 

indicated that time, in many respects, could be treated as a fourth dimension of space, at 

the price of making the time component an imaginary number, with negative squared 

values, the whole combination being described as the Minkowski space-time 4-vector (ix; 

jy; kz; it). Many people, of course, describe this as a mere mathematical convenience, or 

‘trick’, but we still have to explain why such a convenient ‘trick’ actually works. It is 

instructive, therefore, to look at a representation of mass and charge. 

Here, we may imagine, as is generally believed, that the electric, strong and weak 

source terms (say e, s, w) would, in some idealised regime, be of a similar nature, 

suggesting that we could describe them, by analogy with space, as ‘dimensions’ of a 

single quantity, generically known as ‘charge’. This could be justified in terms of the fact 

the Newton and Coulomb force laws effectively square mass and charge terms, in the 

same way as space and time terms are squared in Pythagorean addition. Now, we have 

the intriguing fact, long known but never explained, that forces between like masses are 

attractive, whereas forces between like charges (of all kinds) are repulsive; that is, the 

forces between like masses and like charges have opposite signs. However, if we choose 

to represent charges by imaginary numbers and masses by real ones, we then have a 

symmetrical representation for the Newton and Coulomb force laws: 

 

   F = – 
Gm1m2

r2   

 

   F = – 
iq1iq2

4or2  

 

The three types of source would, of course, have to be distinguished from each other 

in some way, and so would each require a different imaginary number, or square root of –

1. However, the mathematics required for such a situation is already available and has 

been well-known for a hundred and fifty years. This is the quaternion system, discovered 

in 1843, in which i, j and k, the three square roots of –1, are related by the formulae: 

 

                   i2 = j2 = k2 = ijk = –1 . 

 

Effectively the quaternion components are the reverse of the 4-vectors used in 

Minkowski space-time: three imaginary parts and one real (ordinary real numbers), as 

opposed to three real parts and one imaginary. Their special significance is that they are 

unique; no other associative extension of ordinary complex algebra involving imaginary 
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dimensions is possible. A system with two imaginary parts is impossible, and there are no 

systems with four, five or six imaginary parts. A system with seven imaginary parts is 

possible (octonions), but this requires breaking the rule of associativity; and there are no 

systems with more than seven. 

It seems that, for dimensions determined by Pythagorean addition, the number three 

has a special significance. The three imaginary parts, in this representation, would be 

associated with the three components of charge (say, ie, js, kw), leaving the real fourth 

part to represent mass. Space and time would then become a three real- and one 

imaginary-part system by symmetry, and the necessary mathematical connection between 

space and time would be explained as a consequence of the necessary mathematical 

connection between charge and mass: 

 

  space-time  ix jy  kz  it 

  mass-charge  ie js  kw m 

   

Quaternions, however, have different rules of multiplication, there being no such 

thing as a ‘full product’ (ab) between two vectors, a and b, such as exists between two 

quaternions. However, if we were to postulate that the symmetry between space-time and 

mass-charge should be an exact one, we could extend the vector property of space to 

incorporate a quaternionic-like ‘full’ product between two vectors, combining the scalar 

product with i times the vector product. This procedure has been fully justified by several 

decades of mathematical development, and it turns out that the extra vector terms in the 

full product are just those required to explain the otherwise ‘mysterious’ spin property in 

quantum mechanics. 

It is here that, now we understand the meaning of ‘dimensionality’ in the case of 

charge, we can return to the subject of its rotation asymmetry. If charge is absolutely 

conserved, then we can expect conservation in dimension as well as in quantity, which is 

what we mean by rotation asymmetry. That is, the sources of the electromagnetic, weak 

and strong interactions should be separately conserved, and incapable of interconversion. 

Immediately, this tells us that the proton, which has a strong charge measured by its 

baryon number, cannot decay to products like the positron and neutral pion, which have 

none. In fact, separate conservation laws should immediately lead to baryon and lepton 

conservation, baryons being the only particles with strong, as well as weak, components, 

and leptons being the only particles with weak, but no strong, components. We will see 

later how this produces a new manifestation of Noether’s theorem. 

Dimensionality, however, is not the only advantage of an imaginary representation 

for charge, for imaginary numbers have yet another important property. This is the fact 

that equal representation must be given to positive and negative values of imaginary 

quantities. Neither positive nor negative imaginary values may be privileged in algebraic 

equations; every equation which has a positive solution also has an algebraically 
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indistinguishable negative solution (the complex conjugate). Consequently, all our 

charges (but not necessarily real masses) must exist in both positive and negative states. 

This is exactly what we require to explain the existence of antiparticles, for even those 

particles, such as the neutron and neutrino, which have no electric charge still have 

antiparticles because they have strong and/or weak charges whose signs may be changed 

under the process of charge conjugation. 

 

6 Where does dimensionality come from? 

 

Dimensionality has two aspects – the fact of multidimensionality, and the 

Pythagorean addition of the multiple dimensions by squares. Assuming these two aspects, 

we can solve the problem of three-dimensionality, but dimensionality itself is too 

complex to be a basic property. It must be explicable on some more fundamental 

grounds. It is necessary, here, to compare the dimensional (or multidimensional) 

parameters, space and charge, with the nondimensional (or one-dimensional) parameters, 

time and mass. 

Though space and time are associated mathematically in the Minkowski formalism, 

but there is good evidence that they are fundamentally different. Space, for example, is 

always used in direct measurement; it is, in fact, impossible to measure directly any other 

quantity. So-called ‘time’-measuring devices, such as pendulums, mechanical clocks, and 

crystal and atomic oscillators, all use some concept of repetition of a spatial interval. 

Space also is reversible – and it is this reversibility which is used in the measurement of 

time – but time is not. There also seems to be a deep philosophical problem, as Zeno’s 

paradoxes suggest, with the infinite divisibility of time. Whitrow, for example, writes: 

‘One can, therefore, conclude that the idea of the infinite divisibility of time must be 

rejected, or ... one must recognize that it is ... a logical fiction.’1 And Coveney and 

Highfield conclude that: ‘Either one can seek to deny the notion of ‘becoming’, in which 

case time assumes essentially space-like properties; or one must reject the assumption 

that time, like space, is infinitely divisible into ever smaller portions.’2 The paradoxes 

seem to show, according to Whitrow, that motion is ‘impossible if time (and, 

correlatively, space) is divisible ad infinitum’1 

Whitehead thought that the pardoxes showed an ‘instant of time’ to be ‘nonsense’,1 

while Bergson, according to Whitrow, ‘enthusiastically adopted the view’ that time ‘is 

wholly indivisible’, ‘as a means of escaping the difficulties raised by Zeno, concerning 

both temporal continuity and atomicity, without abandoning belief in the reality of time. 

... Unfortunately, in attacking the geometrization (or spatialization) of time he went too 

far and argued that, because time is essentially different from space, therefore it is 

fundamentally irreducible to mathematical terms.’1 According to our analysis, there is 

good evidence that one cannot simply assume that time can be indefinitely subdivided 

like space. There is every reason to believe, in fact, that time, unlike space, is an absolute 
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continuum. There is no infinite succession of measurable instants in time, as supposed in 

the paradoxes, because there are no instants. Time cannot actually be divided. In more 

contemporary jargon, space is digital, time is analogue – and we have both concepts in 

nature because we have both parameters. 

The space-time distinction has profound consequences for both mathematics and 

physics, and, if we believe (as I do) that physics is the inherent creator of mathematics, 

and not merely the employer of its techniques, then we will say that the mathematics 

which is possible is created because it is possible physically. We can, for example, say 

that time is the set of reals with the standard topology superimposed (and is 

nonalgorithmic); space is the set of reals without the topology (and is algorithmic). 

Abraham Robinson, in his Non-Standard Analysis,3 has successfully treated 

infinitesimals as though they had the properties of real numbers, and has shown that 

proofs of many theorems become much simpler by this method, although all non-

standard proofs may be duplicated by standard ones (and vice versa). Non-standard 

analysis is also closely related to Skolem’s non-standard arithmetic of 1934, with its 

denumerable model of the reals, and the so-called non-Archimedean geometry, which 

relates this to space. These versions of non-standard mathematics are a reflection of the 

discrete nature of space while ‘standard’ results (based on limits) rely on the continuity of 

time. 

Though we often describe real numbers in terms of a continuous line in space, the 

‘continuity’ which we attributed to space because of its indefinite divisibility is not what 

is meant by the absolute continuity of time. Absolute continuity cannot be visualised and 

any process used to describe it would deny continuity. The property which space has that 

is often referred to as ‘continuity’ is indefinite elasticity, its ‘continual’ recountability or 

its unending divisibility. But it is this very divisibility of space which denies it absolute 

continuity; and the elastic nature of the divisibility comes from the entirely different 

property of nonconservation. A nonconserved quantity necessarily has nonfixed units, but 

they are units nonetheless. The whole process of measurement depends crucially on the 

divisibility of space, or creation of discontinuities within it. Thus the entire problem of 

Zeno’s paradoxes disappears as soon as we accept that we can have discontinuities or 

divisibility in space, but not in time. 

The discontinuities in space are in both quantity and direction; it can be reversed and 

changed in orientation; and, without both of these properties, measurement would be 

impossible. Time, however, cannot be reversed, precisely because it is absolutely 

continuous. Any reversal of time would require discontinuity. For the same reason, time 

cannot be multidimensional, or, in our terminology, ‘dimensional’. It is also equally 

impossible for a discrete quantity, like space, to be nondimensional, for one cannot 

demonstrate discreteness in a one-dimensional system. Though we think of a line as one-

dimensional, it is really a one-dimensional construction within a two-dimensional one. If 

our space was truly one-dimensional we would only have a point with no extension. We 
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couldn’t demonstrate discreteness, and certainly not discreteness with variability, as we 

demand of space. 

The distinction in status between space and time is even responsible for the 

fundamental fact that time, in the definition of velocity and acceleration, the basic 

quantities used in dynamics, is the independent variable, whereas space is the dependent 

variable. This situation arises because time, as a continuous quantity, unlike space, is not 

susceptible to measurement. We have no control over the variation of time, and so its 

variation is necessarily independent. 

The existence of both ‘standard’ and ‘nonstandard’ versions of analysis and 

arithmetic are consequences of the prior existence of space and time. The mathematical 

options that are available, here and elsewhere, are almost certainly a reflection of the 

availability of physical options. Continuity and discontinuity, finiteness and infinity, and 

so on, probably exist as mathematical categories because they are also physical 

categories. For example, the discrete process of differentiation (using infinitesimals) is 

essentially modelled on variation in space; while the continuous process (using limits) is 

modelled on variation in time. Each is a valid option, as differentiation is a property 

linked to nonconservation, and not concerned, in principle, with the difference between 

absolute continuity and indefinite divisibility. (It is significant that the solutions of 

Zeno’s paradoxes which invoke the concept of limit tacitly assume the time-based 

definition of differentiation.) In arithmetical terms, the Cantorian definition of an 

absolutely continuous set of real numbers has equal validity with the idea of an infinitely 

constructible, though not absolutely continuous, set of real numbers based on algorithmic 

processes. Of significance here is the Löwenheim-Skolem theorem, that any consistent 

finite, formal theory has a denumerable model, with the elements of its domain in a one-

to-one correspondence with the positive integers. 

The continuous-discrete distinction also occurs, as we would expect, between mass 

and charge. Mass (in the sense that it incorporates fields and energy) is an absolute 

continuum present in all systems and at every point in space; this is why there it is 

unipolar, unlike charge, for negative mass would necessarily require a break in the 

continuum, as would any multidimensionality. Charge, on the other hand, is divisible and 

observed in units. Naturally because charge is also a conserved quantity, unlike space, 

these units must be fixed, unlike those of space. Again, charge as a noncontinuous 

quantity is also dimensional. 

Our analysis will also allow us to deal with two well-known physical paradoxes. One 

is the ‘reversibility paradox’, where time, according to the laws of physics is reversible in 

mathematical sign, when it is clearly not reversible in physical consequences. Time, 

however, is characterised by imaginary numbers, and imaginary numbers are not 

privileged according to sign. Thus, it is quite possible to have a time which has equal 

positive and negative mathematical solutions because it is imaginary, but which has only 

one physical direction because it is continuous. The corresponding unipolarity, or single 
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sign, of mass is the reason why we have a CPT, rather than an MCPT, theorem, C 

standing for charge conjugation, P for space reflection and T for time reversal, all of 

which have two mathematical sign options. 

The other apparent paradox is wave-particle duality. This arises from the fact that, 

when we mathematically combine space and time in Minkowski’s 4-vector formalism, as 

symmetry apparently requires us to do, we have two options: we can either make time 

space-like (or discrete) or space time-like (or continuous). Using the discrete options, we 

obtain particles, special relativity and Heisenberg’s quantum mechanics.4,5 Using the 

continuous options, we obtain waves, Lorentzian relativity and Schrödinger’s wave 

mechanics. Heisenberg makes everything discrete, so mass becomes charge-like quanta 

in quantum mechanics; Schrödinger, on the other hand, makes everything continuous, so 

charge becomes mass-like wavefunctions in wave mechanics. In measurement, the true 

situations are restored, for Heisenberg reintroduces continuous mass via the uncertainty 

principle and the virtual vacuum, while Schrödinger reintroduces discrete charge via the 

collapse of the wavefunction. 

 

7 A group of order 4 

 

We have shown that the four basic parameters may be distributed between three sets 

of opposing paired categories: real / imaginary, conserved / nonconserved, divisible / 

indivisible, with each parameter paired off with a different partner in each of the 

categories, according to the following scheme: 

 

 space real nonconserved divisible 

 

 time imaginary nonconserved indivisible 

 

 mass real conserved  indivisible 

 

 charge imaginary conserved divisible 

 

The properties where they match, seem to be exactly identical, and where they 

oppose, to be in exact opposition. Mathematically, the scheme incorporates a group of 

order 4, in which any parameter can be the identity element and each is its own inverse. 

We can easily generate an algebraic representation by representing the properties of space 

(real, nonconserved, divisible) by, say, a, b, c, with the opposing properties (imaginary, 

conserved, indivisible) represented by –a, –b, –c (though this representation is not, of 

course, unique). The group now becomes: 
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   space  a b c 

   time  –a  b –c 

   mass  a –b –c 

   charge  –a –b c 

 

With group multiplication rules of the form: 

 

             a * a = –a * –a = a 

            a * –a = –a * a = –a 

             a * b = a * –b = 0 

 

and similarly for b and c, we can establish a group multiplication table of the form: 

 

*  space  time  mass  charge 

 space  space  time  mass  charge 

 time  time  space  charge  mass 

 mass  mass  charge  space  time 

 charge  charge  mass  time  space 

 

This is the characteristic multiplication table of the Klein-4 group, with space as the 

identity element and each element its own inverse. However, there is no reason to 

privilege space with respect to the other parameters, since the symbols a and –a, b and    

–b, c and –c are arbitrarily selected, and any of the other three parameters may be made 

the identity by defining its properties as a, b, c. 

 

8 The Dirac state 

 

We can proceed, from this mathematical structure, to derive relations between the 

parameters which represent the binary operations between the group members.6-8 In 

particular, using the numerical relations between the units of space and time and mass 

and charge necessitated by the 4-vector and quaternion structures, we can generalise to 

group relations between each parameter and every other, and to the equivalent inverse 

relations, suggesting the existence of fundamental constants with the dimensions of G, h 

and c. Here, for the first time, we see the significance of the squaring operation involved 
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in dimensionality, or the multiplication of a unit of any parameter by an identically-

valued unit of the same parameter. 

It is significant here that  units of mass and charge have individual identities, unlike 

those of space and time, and so the ‘squaring’ of their units becomes the multiplication of 

individual units, such as m1m2 and q1q2, and such ‘squaring’ must be a universal 

operation between any units of mass and charge, no individual unit being privileged. It 

will be convenient to give this process the name of ‘interaction’. (It will be recognised 

that ‘interaction’ in this sense is nonlocal.) The numerical relations established between 

the parameters through the group, can be combined with conservation and 

nonconservation conditions to provide mathematical derivations of the laws of classical 

mechanics, electromagnetic theory and quantum mechanics, in terms of these 

‘interactions’. Another development suggests that the relationship between the quaternion 

representation and the requirement of separate conservation for charges might affect the 

fundamental particle (or ‘charge’) structures that are possible. 

Making direct use of the 3-dimensionality of charge and space, we can devise an 

overall structure requiring a quaternion and a 4-vector within another overall quaternion-

type arrangement. This can be accomplished using an octonion, with sixteen members 

(1m, is, je, kw, et, fx, gy, hz), though this is no longer a group. The 

nonassociativity of the dimensional terms in the octonion extension seems to be lost 

within terms which effectively cancel each other out, and are of no physical significance. 

A related development occurs when we combine the units of 4-vector space-time 

with those of quaternion mass-charge. The combination of these two constructs, putting 

the four parameters onto an equal overall footing in a single mathematical representation, 

creates a 32-part algebra which is identical in all respects to the 32-part algebra used in 

the Dirac equation for the electron. The 32 parts are then conveniently derived from an 

anticommuting pentad with just five primitive components (ik, ii, ij, ik, j). It will be seen 

that these are the coefficients in the Dirac equation for the respective energy term (E), 

momentum term (p) in three vector components, and rest mass term (m). Analysis shows 

that these terms are created by the superposition of the charge quaternion labels (k, i, j) 

onto the respective parameters time, space and mass. The same process creates the 

fundamental variation seen in the behaviour of the weak, strong and electromagnetic 

charges, and suggests their idealised unification in an SU(5) / U(5) group structure. 

The Dirac algebra can also be generated by taking charge as the identity element of 

the parameter group, and representing it by a scalar; the remaining structure for time, 

space and mass (and, implicitly, the energy, momentum and mass operators) becomes 

that of the Dirac algebra, and SU(5) or U(5). Such representations do not determine the 

properties of space, time, mass and charge. They exist because the group has four 

components, and can, therefore, be represented by a 4-component structure like 

quaternions, in which the link between elements is made by a binary operation 
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(squaring); but the link between a group with four components and a 4-dimensional 

space-time or mass-charge may be in itself significant. 

 

9 Noether’s theorem revisited 

 

The symmetries we have discussed are prescriptive as well as descriptive. New 

results may be derived on symmetry grounds even before we have the means of working 

out their mathematical or physical consequences. One example is associated with an 

extension of Noether’s theorem. This theorem, as we have seen, requires the translation 

symmetry of time to be linked to the conservation of energy. Of course, since energy is 

related to mass by the equation E = mc2, then the translation symmetry of time is also 

linked to the conservation of mass (that is, mass in the general sense, not rest mass). To 

put it another way, the nonconservation of time is responsible for the conservation of 

mass. This result could have been derived from symmetry alone, as it is inherent in the 

Klein-4 group structure; and so, extending the analogy, we can link the conservation of 

the quantity of charge with the nonconservation, or translation symmetry of space; and 

since the latter is already linked with the conservation of linear momentum, we can 

propose a theorem in which the conservation of linear momentum is responsible for the 

conservation of the quantity of charge (of any type). By the same kind of reasoning, we 

can make the conservation of type of charge linked to the rotation symmetry of space, and 

so to the conservation of angular momentum, as in the following scheme: 

 

 symmetry conserved linked 

  quantity  conservation 

 

 space linear value of 

 translation momentum charge 

 

 time energy value of 

 translation  mass 

 

 space angular type of  

 rotation momentum charge 

 

When I first proposed these theorems more than a decade ago,7 I could only give 

some special cases of their applications. Thus, the conservation of electric charge within 

a system has been known, since 1927, to be identical to invariance under transformations 

of the electrostatic potential by a constant representing changes of phase, and the phase 

changes are of the kind involved in the conservation of linear momentum. Since, in a 

conservative system, electrostatic potential varies only with the spatial coordinates, this 

is, in effect, a statement of the principle that the quantity of electric charge is conserved 

because the spatial coordinates are not, which is a special case of the first predicted 
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relation. In the second case, the relation between spin and statistics observed in 

fundamental particles could be explained by saying that fermions and bosons have 

different values of spin angular momentum, and they also differ in that fermions carry 

weak units of charge, where bosons do not. In some way, then, the presence of a 

particular type of charge determines the angular momentum state of the particle, so 

conservation of this type of charge is linked with the value of angular momentum. As a 

result of recent developments, I have now been able to show that the conservation of 

angular momentum does indeed require the separate conservation of weak, strong and 

electric charges, through the conservation of the separate properties of orientation (with 

respect to the linear momentum), direction, and magnitude. 

 

10 Analytic versus synthetic 

 

Our examination of the structure of fundamental physics has revealed that symmetry 

is an essential ingredient in a successful theory. It has also suggested that symmetries at 

the fundamental level must be absolute. Such absoluteness cannot be achieved at any but 

the most abstract or analytic level. The major fundamental ideas in physics have always 

been analytic rather than synthetic. Strangely, such analytic ideas have always been 

resisted, even by other physicists, especially when their bases are abstract rather than 

concretely realisable. The Newtonian method is a classic instance. Like quantum 

mechanics in our own time, it was opposed in principle by nearly all leading scientists of 

the time, because it postulated an abstract concept of gravitational force independent of 

any known mechanism which could produce it. It was used only because it worked. That 

is, it succeeded ultimately, not on account of its fundamental analytical validity, but 

because it could be applied synthetically to a wide range of physical phenomena. 

Newton’s method separated the abstract system from physical measurement. The 

system had a perfection that could never be physically realised. The principle underlying 

all his work was that there were a few certain types of information which were more 

fundamental than others and that these were abstract and could be defined precisely in an 

abstract way without regard to any model of nature based on concrete terms. For Newton, 

though not for his mechanistically-inclined contemporaries, the ultimate causes of things 

were abstract rather than mechanical. The laws describing the system did not depend on 

any physical hypotheses. As he said in Query 28 of the Opticks of 1717: ‘the main 

Business of natural Philosophy is to argue from Phaenomena without feigning 

Hypotheses, and to deduce Causes from Effects, till we come to the very first Cause, 

which certainly is not mechanical ...’ 

According to this way of doing physics, universal laws are abstract definitions and 

do not primarily describe nature. Scientific knowledge is not organised around 

hypotheses, mechanistic or otherwise, but around fundamental abstract laws which are 

not derived directly from experiment, but which are the basic parameters in terms of 
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which experimental information is organised. Since they only concern details and since 

assumptions of any kind can be made in hypotheses, experimental tests are not tests of 

the validity of fundamental laws. 

All other physical laws than the universal ones are solutions of general equations 

which are ultimately approximate or local. Again, the universal law cannot describe any 

particular physical system, but is rather a totally abstract statement of a relationship 

between fundamental parameters of measurement such as mass, space and time. 

Mathematically, universal laws are expressed by differential equations of which there is 

no exact solution. The solution always involves an approximation, which does not 

directly relate to the equation. Differential equations are expressed, not in terms of 

algebraic relations between the quantities themselves, but in terms of their rates of 

change, or rates of rates of change. To convert from relations involving rates of change to 

simple and direct relations between the original quantities (which is described as 

‘solving’ the equations), one has to reduce the general equation to a particular case by 

imposing ‘boundary conditions’ and this is essentially a process of approximation. In 

effect, general and exact laws cannot give us direct knowledge; to obtain the latter, we 

have to reduce the infinite number of possible solutions to a particular and individual case 

using some kind of approximation. 

In Newton’s own system, the universal law of gravitation, everything attracting 

everything else, means that the system was fundamentally indeterminate. Perfection 

certainly existed in the inverse-square law of attraction between all particles, but the very 

universality of this law made it impossible to have perfection in a system of such 

particles in motion. The motion of every particle depended on an infinite number of 

interactions; strictly speaking, it was not even possible to specify the motion of a particle 

unless the effect of all these interactions was known. There was no perfection in observed 

nature, only in the abstract system.  

It is significant that mass, in Newton’s theory, is something other than the mere 

quantity of matter. He even describes it as a kind of ‘force’, the ‘impressed force’, and 

gives it force-like properties. The relation between matter and force in the theory allows 

something outside of matter and opposing it, which can be treated abstractly. Newton, 

with his theological inclinations, called it ‘spirit’, which brought him into conflict with 

the more strictly materialist followers of Descartes. However, in later physics, there is 

always something other than matter, which has this characteristic. In the nineteenth 

century, it might be the field concept or aether; in the twentieth century it might be 

energy or vacuum. A version of it comes into particle physics with the distinction 

between fermions and bosons. The ultimate origin, in my view, is the distinction between 

mass and charge (which roughly correspond to the nineteenth-century aether and matter), 

but it is important that physicists have always found the need for something in opposition 

to the matter concept. 
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11 The power of analogy 

 

The idea of ‘charge’ developed as the eighteenth century struggled to establish the 

electrostatic force as inverse-square, like gravity, while Kant shows that this was a 

natural result of 3-dimensional space. The whole thrust of this work was to produce an 

analogy between the different physical forces. Though current electricity and 

electromagnetism complicated the picture, Maxwell, eventually set down, in 

mathematical form, all the laws that were known to be valid for electric and magnetic 

fields – in particular, those of Coulomb, Ampère and Faraday – and in doing so noted that 

there was an asymmetry which could be corrected by the addition of another term to the 

law of Ampère. This term was the so-called displacement current – a current which he 

supposed must exist when charge was supplied to a parallel plate capacitor. Even though 

there was no physical justification for such a current except by analogy, the assumption 

had a remarkable effect, for Maxwell was immediately able to generate wave equations 

whose velocity is exactly that of light. 

The objection to Maxwell’s theory of the electromagnetic field for many years was 

its intrinsically abstract nature. William Thomson (Lord Kelvin) famously declared: ‘I 

never satisfy myself until I can make a mechanical model of a thing. If I can make a 

mechanical model I can understand it. As long as I cannot make a mechanical model all 

the way through I cannot understand; and that is why I cannot understand the 

electromagnetic theory.’ (Baltimore Lectures, 1884) Following the special theory of 

relativity, the whole of electromagnetic theory became explicable as an extension of 

Coulomb’s inverse-square law by the addition of a fourth-dimension onto that of space in 

Minkowski’s space-time (which did away with the need even of Einstein’s simplified 

kinematics). The simple parallel between electromagnetism and gravity (or between mass 

and charge) had at last been established, and it was natural to assume (as in general 

relativity) that the 4-dimensional space-time connection applied to the gravitational, as 

well as the electromagnetic. 

The method of analogy presupposes the more fundamental concept of symmetry, and 

this would seem to be the magic ingredient which makes physics work. Symmetry allows 

us to do what Newton and other analytic physicists have wished to do: to define an 

abstract, unknowable reality, combined with a process of observation or measurement of 

its parts. Symmetry between two concepts means absolute identity in most respects, 

combined with absolute opposition in one. So symmetry allows us to characterize a part 

of reality without characterizing the whole. Only through symmetry can unity result in 

diversity. And physics works in such a way that when you characterize a part of reality in 

a certain way, you are necessarily characterizing the rest as different (i.e. opposite). This 

is what explains Newton’s success in introducing mass as a conserved quantity opposed 

to the variables space and time, and also the success of his opposition of matter and what 

he called ‘spirit’ (ultimately resolving itself as charge and mass). But he didn’t 
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consciously set out to do this; he developed by the ruthless application of analytical 

techniques the only procedures that would work. 

The same applies to the creators of quantum mechanics. Though the abstract aspects 

of the Newtonian and Maxwellian theories were long resisted on account of their 

intrinsically abstract nature, quantum mechanics has forced modern physicists into the 

same abstract positions. When Werner Heisenberg introduced his new mechanics, 

strongly influenced by the formalized dynamical tradition dating back to Lagrange, in 

which relations were expressed only between observable quantities, he abandoned the 

reality of Bohr’s physical electron orbits and the concept of orbital radius, in order to 

retain the measurable quantity of frequency as a fundamental quantity. This led to Bohr’s 

Copenhagen interpretation, in which the abstract system was effectively separated from 

the physical measuring apparatus. The subsequent development of the ideas of 

nonlocality and entangled states, backed up by strong experimental evidence, has led 

physics back to the indeterminate infinity of interacting states required even in the 

classical Newtonian theory, but ignored by his successors. 

Quantum mechanics has left many people puzzled. It is clearly a highly successful 

theory, which can make predictions to eleven places of decimals (in the case of the 

magnetic moment of the electron), but why does it imply that there is no fundamental 

‘naïve’ reality in which real particles with real positions and real momentum states 

interact with each other with real forces? The answer ought to be simple, and I believe 

that it is. We have no right to believe that nature can be described according to the 

principles of measurement, or according to those of ‘naïve’ realism. Quantum mechanics, 

in fact, merely takes to an extreme the principles of conservation and nonconservation 

which underlie the more classical areas of physics. We simply construct conservation 

equations for charge and mass which allow for the complete variation of the 

nonconserved parameters space and time which is part of their original specification. It 

describes the ultimate abstract system based on symmetry. 

 

12 The nature of reality 

 

There is no such thing as ‘reality’. Physics has been constructed in such a way that it 

avoids creating any such concept. The power and the generality of the subject originates 

entirely in this. However, circumscribed beings like ourselves cannot avoid thinking in 

‘realistic’ terms, and so we have created a system in which apparent reality in one aspect 

is countered by total nonreality in another. Hence, at the most fundamental level, physics 

is described by an abstract system, whose relationship to the original concept of 

measurement is only ever indirect, though it must always be present. Measurement is a 

component of the system, but it cannot describe it completely. In addition, the 

mathematical structures which we employ are not a separate system which we apply to 
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physics but an integral component of it. Valid mathematical structures have an ultimately 

physical origin. 

It is symmetry which makes it possible to avoid characterizing reality. If to every 

concept there is an exactly symmetrical opposite, then we never have to specify reality if 

we use both at the same time. Symmetry can also be exact, in a way that no specific idea 

can, and it helps us to reduce our starting assumptions without reducing our range of 

options. Symmetry, however, does not mean identity. Space and time are not identical, 

but typically symmetrical concepts: they have some points of identity and others which 

are different, and indeed symmetrically opposite – facts which ultimately explain wave-

particle duality and Zeno’s paradoxes. It follows also that the programme to reduce 

everything to an aspect of space in multiple dimensions is fundamentally misconceived 

because physics needs its symmetrical opposites for its success. 

It is clear that the search for a unified theory, however secular it has now become, is 

essentially at one with the originally theologically-inspired project of the fourteenth 

century, subsequently continued into the seventeenth century by Galileo and Newton, and 

we now have a better understanding of what such a theory would actually look like. It 

would certainly be characterized by abstraction, simplicity and symmetry. It would also 

be, in principle, extreme, no compromise being allowed for an ultimate theory. There 

would be no mathematics, other than that derived through symmetry principles, no 

model-dependent structures of any kind, and no arbitrary cosmology. It would certainly 

look different from any theory yet devised for a particular aspect of physics, yet these 

would all be ultimately deducible from it. Our analysis of such structures as we consider 

to be at the heart of physics suggests that they are not there either for mathematical or for 

measurement convenience. Physics does not work because it provides a simple or 

convenient description of ‘reality’. Physics works because it has successfully, and 

uniquely, avoided characterizing nature. 
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