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Abstract. A core level of basic information for physics is identified, based on an analysis
of the characteristics of the parameters space, time, mass and charge. At this level, it is
found that certain symmetries operate, which can be used to explain certain physical
facts and even to derive new mathematical theorems. Applications are made to classical
mechanics, electromagnetic theory and quantum mechanics.

1 A foundational level

Certain aspects of physics suggest the existence of a core level of basic information
which is completely independent of any hypothesis or model-building. This information
is concerned with the definition of the fundamental parameters of measurement and how
they are structured. Here, we are not so much describing nature itself as specifying the
characteristics of the simplest categories needed to make such a description possible. It
is, of course, sometimes argued that physics should not necessarily be concerned with
the simplest possible ideas because nature may well not be simple in principle, but this
argument is based on a misconception. Physics as we know it has evolved because it has
created a set of simple categories which have been successful in devising the human
construct that we call the ‘description of nature’. Whether or not such simplicity is truly
characteristic of ‘reality’ is a question outside the realm of physics.

Now, the purpose of isolating a foundational level for physics would be to give a
simple account of those important facts which are purely concerned with our own
processes of measurement, and not with, say, the nature of matter or the structure of the
universe. Such information, if isolated, could be dealt with more efficiently than if
linked, unnecessarily, with more specific or more complicated theories, and could lead
to the creation of wholly new sources of foundational information. In addition, if we
pitch our foundational theories at a high level of sophistication, as we are often tempted
to do, we cut ourselves off from understanding their origins. Many truly fundamental
results have often turned out to be simple in principle, even when it has taken a
sophisticated approach to find them. The simple bases are often found only after a
prolonged struggle with more complicated ideas, but it is possible that we could
discover some of them more easily by a direct analysis.
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In attempting to reach the foundational level, then, we need to separate out the truly
fundamental ideas from the mass of sophistications which inevitably accompany them,
but the really basic ideas may not be particularly difficult to find. Obviously, for
example, space and time are basic; it is impossible to conceive a theory of physics
without space and time. This is not necessarily true for a combined space-time;
combinations, by definition, are not basic. If we use space-time as basic, we lose sight of
the separate identities of space and time, which are surely important at the fundamental
level. It is certainly not true that in combining them we have explained one in terms of
the other. We should really regard space-time, whether curved or otherwise, as a
sophistication, as something to be discovered after we have investigated the separate
identities of space and time.

Once we have selected space and time, there is only one other type of information
that is likely to fit the description ‘basic’ , for the fundamental bases of the whole of
physics are undoubtedly the four known interactions: gravity; electromagnetism; and the
strong and weak nuclear forces. Once we truly understand these, then we will also
understand physics. But we already know something about them. We know, for
example, that the source terms for gravity and the electromagnetic interaction are,
respectively, mass and electric charge. We don’ t know the source terms for the weak
and strong forces as precisely, but we know that such terms must exist; and, according
to the rules of quantum electrodynamics, they should be more like electric charge than
like mass. Also, although the three nongravitational forces are very different under
normal conditions, the Grand Unified Theories of particle physics suggest that, under
ideal conditions, they would be identical. It is reasonable, therefore, to assume that the
differences between these forces are not basic, but a ‘sophistication’ , to be explained in
terms of the physical particles that actually exist, after we have established the basics. I
have, therefore, found it convenient to describe the unknown sources for the weak and
strong interactions as weak and strong ‘charges’ , and to refer sometimes to the three
nongravitational sources under the collective label ‘charge’ . Something like this concept
is actually used when we talk about the process of ‘charge conjugation’ .

Thus, we have four basic parameters – space, time, mass and charge – and we can
use such techniques as dimensional analysis to show that all other physical parameters
arise from compounded versions of these elementary ones. We can also show that it is
precisely these parameters which are assumed to be the elementary ones in the statement
of the CPT theorem. It is perhaps slightly surprising that physicists have been so often
prepared to tackle fundamental questions without taking proper account of these basic
ideas. Although we can’ t hope to analyse really basic ideas, we can learn a great deal by
setting one off against the other. It would surely be profitable to examine the properties
of these parameters as closely as possible and look for patterns, or symmetries of one
sort or another, that would help to clarify their meaning and uses. Symmetry has been
such a powerful tool in understanding particle physics and the fundamental interactions
that we have every reason to expect to find it here. We should, at any rate, examine the
properties of our parameters to see whether or not it exists.
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2 Conserved and nonconserved: mass and charge versus space and time

Perhaps the first thing that we notice when we closely examine space, time, mass and
charge is that the last two are conserved quantities and the first two nonconserved. The
conservation laws of mass and electric charge are among the most fundamental in
physics, and we have every reason to believe that they are true without exception.
Almost certainly, also, some type of conservation law applies to the other two types of
charge and manifests itself in such properties of fundamental particles as lepton and
baryon conservation. In addition, the conservation laws of mass and charge are not
merely global, applying to the total amount of each quantity in the universe, but also
local, applying to the amount of each quantity at a given place in a given time. It is as
though each element of mass or charge had an identity which it retained throughout all
interactions, subject only, in the case of charge, to its annihilation by an element with
the opposite sign. We could, in principle, label each unique element with an identity tag
which it would never lose. Mass and charge, thus, have identical conservation
properties, apart from the fact that masses have no elements with opposite sign.

When we look at nonconservation, as manifested by space and time, we might at
first imagine that it is merely the absence of conservation, but this is not so.
Examination shows that it is the exact opposite of conservation and it is just as definite a
property. Nonconservation is, in fact, one of the most interesting and important of all
physical properties, and it manifests itself in many different ways. Thus, just as the
elements of mass and charge have individual, specific and permanent identities, so those
of space and time have no identity whatsoever, and this fact has to be incorporated
directly into physics at all levels. We refer, for example, to the property of translation
symmetry for both space and time. This means that every element of space and time is
exactly like every other, and is not only indistinguishable in practice, but must be stated
to be indistinguishable when we write down physical equations. And this translation
symmetry is not an insignificant philosophical concept; it is responsible for two of the
most important laws in nature, for Noether’ s theorem shows us that the translation
symmetry of time is precisely identical to the conservation of energy, and that the
translation symmetry of space is precisely identical to the conservation of linear
momentum.

Space, in addition, because it is three-dimensional, also has rotation symmetry; this
means that there is no identity, either, for spatial directions. In addition to having no
unique elements, space also lacks a unique set of dimensions. One direction in space is
identical to any other; this is the fact that is responsible for space’ s affine structure, the
infinite number of possible resolutions of a vector into dimensional components. Space
rotation symmetry is a very important property and we will return to it later. Noether’ s
theorem shows that it is exactly the same thing as the conservation of angular
momentum.

The exactly opposite nature of conservation and nonconservation could be
illustrated by expressing the identity or uniqueness properties of mass and charge in
terms of ‘translation’  asymmetries. Translation asymmetry then means that one element
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of mass or charge cannot be ‘translated to’  (or exchanged for) any other within a system,
however similar.

But translation and rotation symmetry are not the only manifestations of
nonconservation in space and time. The whole of physics is based on defining systems
in which conserved quantities remain fixed while nonconserved quantities vary
absolutely. A conserved quantity can only be defined with respect to changes in a
nonconserved quantity. In effect, we look at how mass and charge, and such quantities
as energy, momentum, force or action remain constant, or zero, or a maximum or a
minimum, because of the more fundamental requirements involving mass and charge,
while the space and time coordinates alter arbitrarily. The alteration of space and time is
expressed by describing them in terms of differentials. The very fact that we have based
physics on differential equations and the definition of systems involving conservation
requirements is an expression of the presence of both absolutely conserved and
absolutely nonconserved terms in nature.

The absoluteness of the nonconservation properties is manifested in the gauge
invariance used in both classical and quantum physics. In classical or quantum
electrodynamics, electric and magnetic fields terms remain invariant under arbitrary
changes in the vector and scalar potentials, or phase changes in the quantum mechanical
wavefunction, brought about, essentially, by translations (or rotations) in the space and
time coordinates. Gauge invariance tells us, in effect, that a system will remain
conservative under arbitrary changes in the coordinates which do not produce changes in
the values of conserved quantities such as charge, energy, momentum and angular
momentum. In other words, we cannot know the absolute phase or value of potential
because we cannot choose to fix values of coordinates which are subject to absolute and
arbitrary change. Even more significantly, in the Yang-Mills principle used in particle
physics, the arbitrary phase changes are specifically local, rather than global.
Nonconservation, therefore, must be local in exactly the same way as conservation.

3 Real and imaginary: space and mass versus time and charge

Now, space and time are alike in their nonconservation, but we know that there must be
fundamental differences between them; otherwise, they would be indistinguishable. One
such distinction is evident in the very mathematical combination which produces four-
dimensional space-time. This is the fact that, while Pythagorean addition produces
positive values for the squares of the three spatial dimensions, the squared value of time
becomes negative. A convenient way to represent time, then, is by an imaginary number,
as in the Minkowski space-time 4-vector used in relativity. This, of course, does not
make time ‘imaginary’  in itself; but it is important for us to ask why this particular
‘trick’  actually works. It is not really adequate to describe it as a ‘convenience’  without
explaining why it is convenient. One interesting fact is that an imaginary representation
would also make uniform velocity imaginary, while acceleration would remain real.

To try to get beyond the facile explanation that the trick is good because it works,
we should see if we can learn anything relevant from the representation of mass and
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charge. Here, we have the intriguing fact, long known but never explained, that forces
between like masses are attractive, whereas forces between like (electric) charges are
repulsive; that is, the forces between like masses and like charges have opposite signs.
Now, the force laws effectively square mass and charge terms, in the same way as space
and time terms are squared in Pythagorean addition. Suppose, then, that we choose to
represent charges by imaginary numbers and masses by real ones. We then have a
symmetrical representation for the Newton and Coulomb force laws:

F = – 
Gm1m2

r2  

F = – 
iq1iq2

4πεor2 

In addition, of course, the other two forces – the strong and weak interactions – are
like the electromagnetic in being repulsive for like particles, and so the source terms for
these forces would also presumably be defined by imaginary numbers. But the three
types of source would have to be distinguished from each other in some way. And here
we have a stroke of luck, for the mathematics required for such a situation is already
available and has been well-known for a hundred and fifty years. This is the quaternion
system, discovered by Hamilton in 1843, in which i, j and k, the three square roots of –
1, are related by the formulae:

               i2 = j2 = k2 = ijk = –1 .

For historical reasons, quaternions became a proscribed concept at the end of the
nineteenth century, and they still have a reputation for being ‘difficult’  or ‘esoteric’ ; but,
in fact, they are remarkably easy to use, being effectively the reverse of the 4-vectors
used in Minkowski space-time: three imaginary parts and one real (ordinary real
numbers), as opposed to three real parts and one imaginary. But the real significance of
quaternions is that they are unique. As Frobenius proved in 1878, no other extension of
ordinary complex algebra involving imaginary dimensions is possible: if we require a
dimensional imaginary algebra (as the source terms for the electromagnetic, strong and
weak interactions suggest we might) then we have only one possible choice – an algebra
based on one real part and three imaginary. (This is, of course, if we wish to retain
associativity. One further extension exists in the 8-part octonions or Cayley numbers,
which break associativity, and which are discussed later in the paper.)

Hamilton discovered the quaternions after finding that a system with two imaginary
parts was impossible, and, almost immediately, he felt that he was on to the true
explanation of 3-dimensional space, with time taking up the fourth or real part. By our
analysis, it would be more convenient to apply them to the three imaginary components
of charge, with mass taking up the real part. However, space and time would then
become a three real- and one imaginary-part system by symmetry. In this sense, the three
components of charge (say, ie, js, kw) could be considered as the ‘dimensions’  of a
single charge parameter, with their squared values used in the calculation of forces
added, in the same way as the three parts of space, by Pythagorean addition:
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space-time ix jy kz it
mass-charge ie js kw m

One remarkable consequence of adopting this symmetry as an exact one would be
that the vector property of space would be extended to incorporate a quaternionic-like
‘full’  product between two vectors, combining the scalar product with i times the vector
product. It is the extra vector terms in this product which are responsible for the
otherwise ‘mysterious’  spin property in quantum mechanics.

It is here that we can now return to the subject of the rotation symmetry of space. If
charge, like space, is a three-dimensional parameter, then we need to investigate how
the dimensions behave with respect to each other. Immediately, we should expect a
difference from space, since charge is a conserved quantity. In fact, we should expect
conservation in dimension as well as in quantity; in principle, charge should exhibit
rotation asymmetry. That is, the sources of the electromagnetic, weak and strong
interactions should be separately conserved, and incapable of interconversion.
Immediately, this should tell us that the proton, which has a strong charge measured by
its baryon number, cannot decay to products like the positron and neutral pion, which
have none. Attention to basics here would require the separate conservation of the three
charges to be built into Grand Unified Theories. Particle theorists have been puzzled as
to why the proton does not decay; but basic reasoning suggests that there may be an
answer. (The Weinberg-Salam unification of electromagnetic and weak forces is not, of
course, affected because this theory is a statement of the identity of effect in the two
interactions, under ideal conditions, not of identity of the sources; the three quaternion
operators i, j and k are different sources, though identical in effect.) In addition, separate
conservation laws would easily lead to baryon and lepton conservation, baryons being
the only particles with strong, as well as weak, components, and leptons being the only
particles with weak, but no strong, components.

In view of such advantages in applying an imaginary representation to the three
types of charge, we may be inclined to ask if there is any further benefit; and, in fact,
there is, for imaginary numbers have yet another important property. This is the fact that
equal representation must be given to positive and negative values of imaginary
quantities. Unlike real numbers, imaginary ones allow neither positive nor negative
values to be privileged in algebraic equations. In other words, every equation which has
a positive solution also has an algebraically indistinguishable negative solution (the
complex conjugate). Thus, all our charges (but not necessarily masses) must exist in
both positive and negative states. This is the precise requirement for the existence of
antiparticles; even those particles, such as the neutron and neutrino, which have no
electric charge still have antiparticles because they have strong and/or weak charges
whose signs may be changed (under the process of charge conjugation, already
mentioned).
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4 Divisible and indivisible: space and charge versus time and mass

Now space is like time in being nonconserved, like mass in being real, and,
apparently, like charge in being dimensional. Dimensionality, however, doesn’ t really
look like a basic property. Is there any basic property which explains it? It seems very
probable that there is, and, in looking at this question, it will be necessary once more to
examine the relationship between space and time.

Space and time have often been assumed to be alike in most respects, but there is
good evidence that they are fundamentally different. Space, for example, is always used
in direct measurement; in fact, it is impossible to measure anything but space. Our
‘time’ -measuring devices, such as pendulums, mechanical clocks, and crystal and
atomic oscillators, all use some concept of repetition of a spatial interval. Special
conditions have to be used to set up such measurements, whereas any object whatsoever
can be used to measure space. Space also is reversible – and it is this reversibility which
is used in the measurement of time – but time is not.

It may be convenient here to mention the famous paradoxes of Zeno of Elea. Of
course, these are, in a sense, ‘answered’  by the use of limits or infinite series, but
Whitrow, who has made the most extensive and influential recent study, thinks that the
answers still leave the problem incomplete.1 In the well-known argument about the race
between Achilles and the Tortoise, Achilles, in any number of time intervals, should
never catch up with the Tortoise, to whom he has given a lead, because, each time he
thinks he has caught up, he finds the Tortoise has already moved further ahead, even if
only by an ever smaller amount. Another example is the Dichotomy Paradox, in which
an object moving over any distance can never get started because it must cover half the
distance before it covers the whole, and a quarter of the distance before it covers half,
and so on; to go any distance in a finite amount of time, it must already have been
involved in an infinite number of operations.

The problem seems to be the infinite divisibility of time; Achilles, for example,
never catches the Tortoise because we have assumed that the time for the race can be
divided up into finite intervals. On the basis of these, and similar paradoxes, Whitrow
writes: ‘One can, therefore, conclude that the idea of the infinite divisibility of time
must be rejected, or ... one must recognize that it is ... a logical fiction.’  And the more
recent authors, Peter Coveney and Roger Highfield conclude that: ‘Either one can seek
to deny the notion of ‘becoming’ , in which case time assumes essentially space-like
properties; or one must reject the asumption that time, like space, is infinitely divisible
into ever smaller portions.’ 2 The paradoxes seem to show, according to Whitrow, that
motion is ‘impossible if time (and, correlatively, space) is divisible ad infinitum’ 5

Zeno’ s paradoxes pose fundamental problems for the nature of space and time;
Bertrand Russell considered them ‘immeasurably subtle and profound’ , and Alfred
North. Whitehead thought that they showed an ‘instant of time’  to be ‘nonsense’ .2 Our
reason for including them here is to show that there is good evidence that one cannot
simply assume that time can be indefinitely subdivided like space. There is every reason
to believe, in fact, that time, unlike space, is an absolute continuum. There is no infinite
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succession of measurable instants in time, as supposed in the paradoxes, because there
are no instants. Time cannot actually be divided. To use a more contemporary jargon,
space is digital, time is analogue – and we have both concepts in nature because we have
both parameters.

We can also say that time is the set of reals with the standard topology
superimposed (and is nonalgorithmic); space is the set of reals without the topology
(and is algorithmic). Henri Bergson, according to Whitrow, ‘enthusiastically adopted the
view’  that time ‘is wholly indivisible’ , ‘as a means of escaping the difficulties raised by
Zeno, concerning both temporal continuity and atomicity, without abandoning belief in
the reality of time. ... Unfortunately, in attacking the geometrization (or spatialization)
of time he went too far and argued that, because time is essentially different from space,
therefore it is fundamentally irreducible to mathematical terms.’

Continuity is a word with many meanings, and different uses of the word have
caused confusion. The ‘continuity’  attributed to space because of its indefinite
divisibility is not what is meant by the absolute continuity of time. Absolute continuity
cannot be visualised and any process used to describe it would deny continuity. The
property which space has that is often referred to as ‘continuity’  is indefinite elasticity,
its ‘continual’  recountability or its unending divisibility. But the very divisibility of
space is what denies it absolute continuity; and the elastic nature of the divisibility
comes from the entirely different property of nonconservation. We expect a
nonconserved quantity to have nonfixed units, but they are units nonetheless. The whole
process of measurement depends crucially on the divisibility of space, or creation of
discontinuities within it. Thus the entire problem of Zeno’ s paradoxes disappears as
soon as we accept that we can have discontinuities or divisibility in space, but not in
time.

Space can be discontinuous in both quantity and direction; it can be reversed and
changed in orientation; and, without both of these properties, measurement would be
impossible. Time, however, cannot be reversed, precisely because it is absolutely
continuous. Any reversal of time would require discontinuity. For the same reason, time
cannot be multidimensional, or, in our terminology, ‘dimensional’ . The same distinction
occurs between mass and charge. Mass is an absolute continuum present in all systems
and at every point in space (if only in the form of fields and energy); this is why there is
no negative mass, for negative mass would necessarily require a break in the continuum.
Charge, on the other hand, is divisible and observed in units; of course, because charge
is a conserved quantity, unlike space, these units must be fixed, unlike those of space.
Again, charge as a noncontinuous quantity is also dimensional, and, thus we might
suggest divisibility as the ‘cause’  of dimensionality; and, though it is not a direct
argument that divisibility causes dimensionality, it is immediately apparent why
absolutely continuous quantities must be nondimensional.

There is, however, a more direct argument for the dimensionality of discrete
quantities. One cannot, in fact, demonstrate discreteness in a one-dimensional system.
Though we think of a line as one-dimensional, it is in fact no such thing: it is a one-
dimensional construction within a two-dimensional one. If our space was truly one-
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dimensional we would only have a point with no extension. We couldn’ t demonstrate
discreteness, and certainly not discreteness with variability, as we demand of space.
Interestingly, it is dimensionality as such, rather than any particular level of
dimensionality which is responsible for creating the additional level of discreteness
required by the introduction of algebraic numbers, and even of transcendental numbers
such as π; two independent dimensions are sufficient to create the required level of
incommensurability at the rational number level, and the introduction of a third
dimension requires no qualitatively new type of number.

To return to time’ s nondimensionality, one often reads about a ‘reversibility
paradox’ , where time, according to the laws of physics is reversible in mathematical
sign, when it is clearly not reversible in physical consequences. Time, however, we need
to remember, is characterised by imaginary numbers, and imaginary numbers are not
privileged according to sign. Thus, it is quite possible to have a time which has equal
positive and negative mathematical solutions because it is imaginary, but which has only
one physical direction because it is continuous. (The corresponding unipolarity, or
single sign, of mass is the reason why we have a CPT, rather than an MCPT, theorem, C
standing for charge conjugation, P for space reflection and T for time reversal, all of
which have two mathematical sign options.)

The distinction between space and time has many interesting consequences. In
principle, when we mathematically combine space and time in Minkowski’ s 4-vector, as
symmetry apparently requires us to do, we have two options: we can either make time
space-like (or discrete) or space time-like (or continuous). This seems to be the origin of
wave-particle duality. The discrete options lead to particles, special relativity and
Heisenberg’ s quantum mechanics.4,5,6 The continuous options lead to waves, Lorentzian
relativity and Schrödinger’ s wave mechanics. Heisenberg makes everything discrete, so
mass becomes charge-like quanta in quantum mechanics; Schrödinger, on the other
hand, makes everything continuous, so charge becomes mass-like wavefunctions in
wave mechanics. In measurement, the true situations are restored, for Heisenberg
reintroduces continuous mass via the uncertainty principle and the virtual vacuum, while
Schrödinger reintroduces discrete charge via the collapse of the wavefunction. (With the
altered parameters represented by S*, T*, M*, C*, the respective options are S, T*, M*,
C (Heisenberg) and S*, T, M, C* (Schrödinger).)

Another aspect of the distinction between space and time occurs in the fundamental
fact that time, in the definition of velocity and acceleration, the basic quantities used in
dynamics, is the independent variable, whereas space is the dependent variable. This
situation arises because time, unlike space, is not susceptible to measurement. We have
no control over the variation of time, and so its variation is necessarily independent.

The fundamental distinction between the status of space and time almost certainly
also has relevance in mathematics. In the seventeenth century, there were two processes
of differentiation: the discrete (or Leibnizian), essentially modelled on variation in
space; and the continuous (or Newtonian), essentially modelled on variation in time.
Like particles and waves, each is a valid option, for differentiation is a property linked
to nonconservation, and not concerned, in principle, with the difference between
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absolute continuity and indefinite divisibility. (The solutions of Zeno’ s paradoxes that
invoke the concept of limit tacitly assume the Newtonian definition of differentiation.)
Again, it is probable that the Cantorian definition of an absolutely continuous set of real
numbers has equal validity with the idea of an infinitely constructible, though not
absolutely continuous, set of real numbers based on algorithmic processes. (We may
note here the fundamental significance of the Löwenheim-Skolem theorem, that any
consistent finite, formal theory has a denumerable model, with the elements of its
domain in a one-to-one correspondence with the positive integers.) The mathematical
options that are available, here and elsewhere, are almost certainly a reflection of the
availability of physical options. Continuity and discontinuity, finiteness and infinity, and
so on, probably exist as mathematical categories because they are also physical
categories.

Abraham Robinson, in his Non-Standard Analysis,3 treats infinitesimals as though
they had the properties of real numbers, and says that proofs of many theorems become
much simpler by this method, although all non-standard proofs may be duplicated by
standard ones (and vice versa). Non-standard analysis can also be related to Skolem’ s
non-standard arithmetic of 1934, with its denumerable model of the reals, and what has
been described as non-Archimedean geometry, which relates this to space. These
versions of non-standard mathematics are a reflection of the discrete nature of space
while ‘standard’  results (based on limits) rely on the continuity of time.

5 A group of order 4

From what we have seen, then, the four basic parameters seem to be distributed between
three sets of opposing paired categories: real / imaginary, conserved / nonconserved,
divisible / indivisible, with each parameter paired off with a different partner in each of
the categories, according to the following scheme:

space real nonconserved divisible

time imaginary nonconserved indivisible

mass real conserved indivisible

charge imaginary conserved divisible

The properties where they match, seem to be exactly identical, and where they
oppose, to be in exact opposition. (Certain representations, however, like the Dirac
equation involve mathematical reversals of physical properties, the Lorentz-invariant
structure demanding either timelike space or spacelike time, with corresponding
reversals in the properties of mass or charge.) Mathematically, this scheme incorporates
a group of order 4, in which any parameter can be the identity element and each is its
own inverse.7,8,9
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An algebraic representation is easily accomplished by representing the properties of
space (real, nonconserved, divisible) by, say, a, b, c, with the opposing properties
(imaginary, conserved, indivisible) represented by –a, –b, –c. The group now becomes:

space a b c

time –a  b –c

mass a –b –c

charge –a –b c

With group multiplication rules of the form:
         a * a = –a * –a = a
        a * –a = –a * a = –a
         a * b = a * –b = 0

and similarly for b and c, we can establish a group multiplication table of the form:

*  space  time  mass  charge

 space  space  time  mass  charge

 time  time  space  charge  mass

 mass  mass  charge  space  time

 charge  charge  mass  time  space

This is the characteristic multiplication table of the Klein-4 group, with space as the
identity element and each element its own inverse. However, there is no reason to
privilege space with respect to the other parameters, since the symbols a and –a, b and
–b, c and –c are arbitrarily selected, and any of the other three parameters may be made
the identity by defining its properties as a, b, c. For example, if mass is made the
identity element, then the group properties may be represented by:

space a –b –c

time –a –b c

mass a b c

charge –a b –c
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and the multiplication table becomes:

*  mass  charge  time  space

 mass  mass  time  charge  space

 charge  time  mass  space  charge

 time  charge  space  mass  time

 space  space  time  charge  mass

Various further representations are possible, and seem to be relevant, in particular,
to the mathematical structure of the Dirac equation. For example, the identity element,
say mass, could be represented by the scalar part of a quaternion (1) and the other three
terms by the imaginary operators i, j, k, if we choose only the modular values, and
ignore the + and – signs:

* 1M iC jT kS

1M 1M iC jT kS

iC iC (–)1M kS (–)jT

jT jT (–)kS (–)1M (–)iC

kS kS jT iC (–)1M

With the + and – signs added, we would require the full (and now cyclic)
quaternion group structure of eight components. It is important to recognise here that the
quaternion operators are extrinsically derived and not an integral component of the
parameters space, time, mass and charge. Though the addition of these operators creates
a new group structure, this structure is a relation between new mathematical constructs
and not between the parameters themselves; it also presupposes the validity of the
original symmetry between the parameters.

If the 3-dimensionality of charge and space is directly involved, the overall
structure would require a quaternion and a 4-vector within another overall quaternion-
type arrangement. This could be accomplished using an octonion, with sixteen members
(±1m, ±is, ±je, ±kw, ±et, ±fx, ±gy, ±hz), though this is no longer a group. The
nonassociativity of the dimensional terms in the octonion extension seems to be lost
within terms which effectively cancel each other out, and are of no physical
significance.
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If charge is taken as the identity element, and is represented by a scalar, the
remaining structure for time, space and mass (and, implicitly, the energy, momentum
and mass operators) becomes that of the Dirac algebra, and SU(5) or U(5). Such
representations do not determine the properties of space, time, mass and charge. They
exist because the group has four components, and can, therefore, be represented by a 4-
component structure like quaternions, in which the link between elements is made by a
binary operation (squaring); but the link between a group with four components and a 4-
dimensional space-time or mass-charge may be in itself significant.

Using the postulated group as a working hypothesis, it becomes possible to explore
possible constraints on the laws of physics, as a result of group properties (as is shown
below). Another area to be investigated might be the way in which the relationship
between the quaternion representation and the requirement of separate conservation for
charges might affect the fundamental particle structures that are possible.8,9,10

6 Scaling relations

The group elements are required to be their own inverses, and to be each identities. In
addition, the group multiplication rule (when all possible arrangements are taken into
consideration) requires:

               charge* time = space* mass .

A binary operation which makes this possible is the squared multiplication of units,
such as already exists for space and time in the 4-vector combination and for mass and
charge when they are combined in a quaternion. It is also inherent in the description of
charge, time, space and mass as, respectively, quaternion (or possibly pseudovector),
pseudoscalar, vector and scalar, that the units of their squared quantities must be
comparable numerically. To create the necessary number of independent fundamental
relationships, we need to define three scaling constants (or rather scaling parameters,
since they need not be actually constant if they are known to vary according to some
fixed rule). And since the system has inherent duality in making each quantity its own
inverse, then we must define a relation between each quantity and the inverse of every
other, for which one further scaling constant (or parameter) will suffice. (The existence
of the binary operation of squaring within the parameter group seems to be linked to the
same operation being responsible for the 4-dimensionality of space-time and mass-
charge.)

The group relationship predicts that such fundamental constants must exist, while
effectively ensuring that their individual values have no independent meaning. To relate
these to familiar scales of measurement, we create them from combinations of the four
historically-generated fundamental constants G, c, h (or h−), 4πεo. (Here, for
convenience, we assume that ‘charge’  has the electromagnetic value, though this is not a
necessary assumption, and a grand unified value could be used instead; the actual
‘values’  of the constants are not particularly significant – only the fact that some such
scaling must exist.)
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We can now express the scaling relations between the units of space (r), time (t),
mass (m), and charge (q) as follows (with the equality sign being interpreted as meaning
‘equivalence’ ):

r = ict (1)

r = 
G
c2  m (2)

iq = (4πεoG)1/2 m (3)

The respective imaginary and quaternion operators required by t and q are significant in
determining the signs of their squared units. These operators are normally subsumed
within the symbols t and q, but here they are added for emphasis.

The further relations between any parameter and the inverse of any other can all be
derived from:

m = 
h
c2  

1
it (4)

This last result is the one that we recognise as being responsible for quantization of
energy and other physical properties. Quantization could thus be said to be a result of
the fact that each parameter is its own inverse. Quantization and duality of scale are
aspects of the same phenomenon.

The four independent scaling constants in the above scheme become c, (G / c2),
(4πεoG)1/2, and (h / c2) (or h− / c2). These are merely the scaling relations between the
units of each quantity, but the presence of c2 and h informs us that these quantities are
fundamental to physics, whether classical, relativistic or quantum. In principle, any term
related to another by a scaling relation in a meaningful physical equation can be
replaced by that term to produce another meaningful equation.

A significant aspect of the binary operation between parameters is the squaring of
the units of each, or the multiplication of a unit of any parameter by an identically-
valued unit of the same parameter. Now, units of mass and charge have individual
identities, unlike those of space and time, and so the ‘squaring’  of their units becomes
the multiplication of individual units, such as m1m2 and q1q2, and such ‘squaring’  must
be a universal operation between any units of mass and charge, no individual unit being
privileged. It will be convenient to give this process the name of ‘interaction’ . (It will be
recognised that ‘interaction’  in this sense is nonlocal.)

7 Constructed quantities

The most fundamental laws of physics are essentially definitions and conservation laws.
Classical mechanics, for example, is structured on only two fundamental requirements:
the construction of a quantity involving conserved and nonconserved parameters (force,
energy, momentum, action, Lagrangian, Hamiltonian) and the definition of its behaviour
under variation of the variable components, that is, whether it is defined to be zero,
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invariant, or an extremum. Essentially, the laws of classical mechanics are set up to
define what is meant by a conservative system.

Now, the key concepts in classical mechanics (as in other aspects of physics) are
those which combine the minimum information necessary to distinguish the conserved
and nonconserved parameters. Of the conserved quantities, mass is universal and never
zero, and therefore must be present; charge, however, is local, and can take zero values.
To specify the conservation or invariability of mass, we also need to specify the
nonconservation or variability of space and time; hence, these parameters are included
in differential form. A convenient way to define a system, therefore, would be the
construction of a quantity containing mass and the differentials of space and time. The
most immediately useful constructs then include p = m dr / dit and F = dp / dit (with
time, most conveniently specified as the independent variable). The second quantity, as
has been previously explained, has the advantage of producing a real rather than an
imaginary construct. Now, space, of course, is really a vector (neglecting, for the
moment, any 4-vector aspects); to incorporate this aspect, we may multipy both terms by
the unit vector r / r, to yield the familiar quantities, momentum,

   p = m 
dr
 dit 

and force,
    F = 

dp
dit  .

(Imaginary and quaternion labels are retained here for emphasis but would not, of
course, normally be used.)

The definitions of such quantities are, as yet, purely mathematical and convey no
additional physical information. This can now be supplied, however, by using the
scaling relations to find other quantities to which these defined ones can be related,
while at the same time applying the conditions for conservation and nonconservation.
This enables us to set up a system of equations for classical mechanics and
electromagnetic theory.

8 Classical mechanics

From (2) and (3), remembering that each element of mass is unique, we may derive the
expression

      Gm1m2 = h 
r
it 

In differential form, under the specific conservation of mass elements,

      Gm1m2 = h 
dr
dit  ,

from which

          
Gm1m2

c2it   = m 
dr
dit   = p .
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The mass term on the right hand side, of course, is a new mass unit, distinguishable
from m1 and m2.

By differentiation, and a further substitution,

                     – 
Gm1m2

c2i2t2   = – 
Gm1m2

r2   = 
dp
dit  .

Applying the unit vector, r / r, this becomes

                          – 
Gm1m2

r3   r = 
dp
dit  ,

which is a combination of Newton’ s law of gravitation and second law of motion, with
the left hand side a new equivalent quantity for force, conventionally described as
gravitational force.

Neither m1 nor m2 is, of course, privileged, and so the equation can also be written
in the form:

                            – 
Gm1m1

r3   r = 
dp
dit 

Interpreting the vectors r and p as directed from m1 to m2 means that reversing the mass
terms produces reversed vectors, from m2 to m1, as required by Newton’ s third law of
motion.

The equivalent case for charges defines Coulomb’ s law of electrostatics and
introduces electrostatic force (with the opposite sign, and hence reversed vector, for
identically valued charges):

                                  
q1q2

4πεor3  r = 
dp
dit  .

All the other significant and relations of classical mechanics, in any of its forms, can be
derived now by purely mathematical manipulation. For example, nterpreting a ‘system’
to mean any combination of unit masses, the conservation of momentum follows by
integration of the total force over time, and the conservation of angular momentum (L =
r × p) from the fact that dp / dt in a conservative system is zero.

Direct manipulation of the scaling relations reveals that momentum terms are
equivalent to mcr / r, and that scalar terms of the form Gm1m2 / r and q1q2 / 4πεor,
which we may describe as gravitational and electrostatic potential energies, are
equivalent to those of the form mc2; in each of these cases, m may be described as an
‘equivalent mass’ . Though these results normally emerge only from relativity theory,
they are actually inherent in the structure from which classical mechanics must be
derived.

Further results follow from on immediately from the mathematical definition of
new concepts. Thus, defining velocity as v = dr / dit and acceleration as a = dv / dit, and
field intensity as F / m, we have, in the case of constant mass, F = ma, and can define
gravitational field intensity as
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                               g = – 
Gm
r3   r

and electrostatic field intensity as

                                     E = – 
iq

4πεor3  r .

From vector theory, we can show that, for the related scalar potentials, φ = – Gm / r
and φ = – iq / 4πεor,
                                           g = – ∇φ
and
                                            E = – ∇φ ,

and, also, that the respective force laws are equivalent to the Laplace equations

                                – ∇2φ = ∇.g = 0
and
                                – ∇2φ = ∇.E = 0 ,

in a space without sources, and to the Poisson equations,

                            – ∇2φ = ∇.g = 4πρG
and
                            – ∇2φ = ∇.E = ρ / εo ,

in a space with them. None of this requires any new physical argument.

9 Classical electromagnetic theory

To replace nonrelativistic equations with relativistic ones, we simply replace all vector
terms with 4-vectors, r, for example, being replaced by (r, ict). This procedure can be
done, of course, with purely mechanical equations, to generate the standard results of
special relativity, but it is particularly significant in classical electromagnetic theory,
which follows on immediately from applying 4-vector terms to the definition of
electrostatic force.

The significant fact here is that charge is locally conserved, and, hence, by a
standard argument, the continuity equation,

                     
∂ρ
∂t

  + ∇.j = 0 ,

must apply, with ρ defined as the charge density and j = ρ v as the current density. The
differential operator in this equation is a 4-vector, and so, recognisably, is the quantity
with scalar and vector parts, ρ and j / c.
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Now, the scalar part of this latter quantity appears in Poisson’ s equation,

                                 – ∇2φ = ρ / εo ,

which is the differential form of Coulomb’ s law, and so we should expect to find an
equivalent vector part (A / c) for φ, and an equivalent scalar part (– (1 / c2) ∂2 / ∂t2) for
∇2. Since the new differential operator ð  = ((1 / c2) ∂2 / ∂t2 – ∇2) is itself a universal
scalar, we may separate out the scalar and vector parts of the total equation to give the
wave equations:

            ð  φ = ρ / εo
and

            ð  A = j / εo

It is significant that φ and A are arbitrary to the point where they satisfy these
equations (the condition of gauge invariance, as previously discussed under
nonconservation). For convenience, we can arbitrarily restrict the values using a gauge
condition. If we choose the so-called Lorentz gauge, in which

                                   
∂φ
∂t

  + ∇.A = 0 ,

and define new vectors E and B, without reference to physical characteristics, such that

                     E = – ∇φ + 
∂A
∂t

 
and

                       B = ∇ × A ,

we obtain the four Maxwell equations in their standard form, and identify E and B as
the electrostatic and magnetic field vectors.

10 Conservation laws and fundamental symmetries

The outline derivations of classical mechanics and electromagnetic theory show that the
group structure of space, time, mass and charge has the power to derive conventional
results in a relatively simplified form. Numerous new mathematical results can be
generated by even more direct uses of the symmetries. As previously noted, Noether’ s
theorem requires the translation symmetry of time to be linked to the conservation of
energy. Of course, since energy is related to mass by the equation E = mc2, then the
translation symmetry of time is also linked to the conservation of mass. To put it another
way, the nonconservation of time is responsible for the conservation of mass. This is a
result we could have derived from symmetry alone; and so, extending the analogy, we
could link the conservation of the quantity of charge with the nonconservation, or
translation symmetry of space; and since the latter is already linked with the
conservation of linear momentum, we could propose a theorem in which the
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conservation of linear momentum was responsible for the conservation of the quantity
of charge (of any type). By the same kind of reasoning, we could make the conservation
of type of charge linked to the rotation symmetry of space, and so to the conservation of
angular momentum, as in the following scheme:

symmetry conserved linked
quantity conservation

space linear value of
translation momentum charge

time energy value of
translation mass

space angular type of
rotation momentum charge

In fact, we can immediately show these principles to be true in special cases. As
Fritz London showed in 1927, the conservation of electric charge within a system is
identical to invariance under transformations of the electrostatic potential by a constant
representing changes of phase, and the phase changes are of the kind involved in the
conservation of linear momentum. Since, in a conservative system, electrostatic
potential varies only with the spatial coordinates, this is, in effect, a statement of the
principle that the quantity of electric charge is conserved because the spatial coordinates
are not, which is a special case of the first predicted relation.

In the second case, there is the relation between spin and statistics observed in
fundamental particles. Fermions and bosons have different values of spin angular
momentum; and they also differ in that fermions probably carry weak units of charge,
where bosons have none. It thus appears to be the presence of a particular type of charge
which determines the angular momentum state of the particle, so conservation of this
type of charge is linked with the value of angular momentum. The validity of the full
theorem, and its application to particle physics, can be derived using the quantum
mechanical formalism derived in the next section.11

11 The Dirac equation

Yet another significant mathematical result follows from the basic representations of 4-
vector space-time and quaternion mass-charge. A direct combination of these two
constructs, putting the four parameters onto an equal overall footing in a single
mathematical representation, produces a 32-part algebra which is identical in all respects
to the 32-part algebra used in the Dirac equation for the electron, but much simpler in
form and more powerful.11-18 The components of this algebra can be described as:
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2 complex numbers (1,i)
6 complex unit vectors (1,i) × (i,j,k)
6 complex unit quaternions (1,i) × (i,j,k)
18 complex vector quaternions (1,i) × (i,j,k) × (i,j,k)

Terms equivalent to the five gamma matrices (for example, ii, ji, ki, j, ik) are easily
derived.) A group version, with + and – units requires 64 terms (as does (S*, T*, M*,
C*) × (S, T, M, C)).

Once the Dirac algebra has been established, it is a relatively easy process to show
that the Dirac equation follows from quantization of a basic classical conservation
equation, and the algebra, in this case, becomes simplified to a virtually pure quaternion
algebra, as the vector element is removed via a scalar product. We begin with the
Lorentz-invariant relationship between energy, mass and momentum:

  E2 − p2 − m2 = 0 .

Factorization of this expression requires the use of a complex and noncommutative
algebra, viz. quaternions:

  (kE + iip + ijm) (kE + iip + ijm) = 0 .

We can also incorporate the factor e i(Et  p.r) without requiring new physical
information:

       (kE + iip + ijm) (kE + iip + ijm) e i(Et  p.r)  = 0

In the classical equation, E and p are variables within the requirement that E2 − p2 is
a constant for fixed m2. However, quantization changes the status of these terms so that,
for stationary quantum states, E and p become fixed, along with m. The variability now
becomes confined to the space and time parameters incorporated into the exponential
term, which can now be seen, physically, to represent the entire group of space and time
translations and rotations.

A more general variability of space and time can be incorporated by replacing the
factor (kE + iip + ijm) from the left with the differential operator

                    






ik
∂
∂t

 + i∇ + ijm

acting on the ‘wavefunction’

ψ = (kE + iip + ijm) e−i(Et − p.r)  ,
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producing the expression

                






ik
∂
∂t

 + i∇ + ijm  ψ = 0 ,

which we recognise as the Dirac equation (in a form already second quantized because
the quantization process has been applied to both the differential operator and the
wavefunction).

It will be recognised that the need for quantization of E and p comes from the
inverse relation between m and t, and that the process has a profound effect on the
classical energy-conservation equation. In quantizing via the Dirac equation, and, at the
same time, imposing Lorentz-invariance, we effectively restructure the properties of the
physical quantities involved, though our physical interpretation of the quantities remains
unchanged.

In incorporating both the explicit quantization of E-p-m and the quaternion
operators, the Dirac equation combines S* and T with an effective restructuring of M
with the properties of C. Significantly, this has five components. The fact that only one
direction of spin is well-defined is a consequence of using S* for S.

In classical relativistic theory, we emphasize the 4-vector nature of (iE, p) and
describe E2 − p2 as an invariant, but, here we incorporate the invariance directly, and
define a new term with five components, (kE + iip + ijm), with quantized rest mass.
This 5-‘dimensional’  quantity combines the effects of 3-dimensional conserved and
nonconserved parameters (the momentum term p having 3 dimensions, although only
one is normally defined). In effect, we structure mass (or energy-momentum-mass) as a
3-dimensional quantized and conserved parameter, like charge (with one of the
‘dimensions’  being itself dimensional). This is the result previously achieved by
structuring charge-mass-space-time as a quaternion, with charge as the real or identity
element.

12 Conclusion

The prediction of new mathematical theorems and the derivation of new algebraic
concepts, as well as the procedures for obtaining standard theorems in classical
mechanics, electromagnetic theory and quantum mechanics, show that the method of
symmetry based on fundamental basic principles is not just a philosophical issue, but
also a powerful method of generating new results, and of codifying existing ones. In
fact, it is almost inevitable that new discoveries will follow after any successful exercise
in getting down to the basics.
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