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Abstract. A numerical factor 2 or ½ occurs in many physics equations, classical, relativistic and 

quantum, and also in some aspects of mathematics. Analysis of this factor suggests that, in all 

significant examples, it has a common origin, a fact which has profound implications for the 

philosophical foundations of both physics and mathematics, and the relationship between them. It may 

be tracked down, ultimately, to the principle of duality, in which both physics and mathematics 

structure themselves by trying to avoid creating ‘something’ from nothing. 

 

GEOMETRY  AND  KINEMATICS 

 

We probably first come across the factor 2 in the formula for the area of a triangle, ½ 

× length of base × perpendicular height. In the right-angled triangle, it is created by 

bisecting a rectangle along a diagonal. If this is now taken as representing a straight-

line graph, of, say, velocity (v) against time (t), under uniform acceleration, the area 

under the graph becomes the distance travelled, ½ vt. By comparison, for an object 

travelling at steady speed v throughout the same time interval t, the distance travelled 

is the area of the rectangle under the horizontal straight line representing steady v, that 

is, vt. The factor 2, in this case, distinguishes between steady conditions and steadily 

changing conditions. 

 

Starting from an initial velocity u, and supposing the same uniform acceleration, we 

obtain the ‘mean speed theorem’, in which the total distance travelled under uniform 

acceleration equals the product of the mean speed and the time: s = ½ (u + v) t. If we 

additionally define uniform acceleration as a = (v – u) / t, we obtain the well-known 

equation for uniformly accelerated motion: v2 = u2 + 2as, which becomes v2 = 2as, 

when u = 0. If we now apply this to a body of mass m, acted on by a uniform force F 

= ma, we find the work done over distance s is equal to the kinetic energy gained 

 

           Fs = mas = 
mv2

2
 – 

mu2

2
 , 

 

which reduces to ½ mv2 if we start at zero speed. Using p = mv to represent 

momentum, it is convenient also to express this formula in the form p2 / 2m. It is easy, 

of course, to show that this formula applies additionally to the case of nonuniformly 

accelerated motion, using a simple integration of force (dp / dt) over displacement: 

           

 

 

 
dp

dt
  ds = 

 

 

 mv dv  = 
mv2

2
  . 
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In principle, however, we see that a steady increase of velocity from 0 to v requires an 

averaging out which halves the values of significant dynamical quantities obtained 

under steady-state conditions. 

 

KINETIC  AND  POTENTIAL  ENERGY 

 

The same factor makes its appearance, in precisely the same way, in molecular 

thermodynamics, quantum theory and relativity. Its significance here is that it relates 

the continuous aspect of physics to the discrete, and, since these aspects are required 

in the description of any physical system, the factor acquires a universal relevance. 

An obvious classical manifestation is the fact that two types of conservation of energy 

equation are commonly used in physics. Potential energy equations represent steady-

state conditions, when there is no overall change in the energy distribution; kinetic 

energy equations apply when there is a redistribution of energy within a system 

though the energy remains conserved overall. Typically, we apply the potential 

energy equation to the case of a planet in a regular gravitational orbit. So, the force 

equation 

                    
mv2

r
  = – 

GMm

r2   

leads to an equivalent potential energy relation 

          mv2 = – 
GMm

r
 . 

However, the changing conditions involved in the escape of a body of mass m from a 

gravitational field require a kinetic energy equation of the form 

 

                      
mv2

2
 = 

GMm

r
 . 

 

Numerically, in such cases, the potential energy term is twice the value of the kinetic, 

and we recognise that this is a special case of the virial theorem, according to which, 

in a conservative system governed by force terms inversely proportional to power n of 

the distance, or potential energy terms inversely proportional to power n – 1, the time-

averaged kinetic and potential energies, T
−

 and V
−

, are related by the formula: 

 

                                  T
−

 = 
(1 – n)

2
 V
−

  . 

 

For the two special cases, of constant force and inverse-square-law force, V
−

 is 

numerically equal to 2T
−

. Such forces, in fact, are overwhelmingly predominant in 

nature, because they are a natural consequence of three-dimensional space, and this 

may well be related to the geometric origin of the factor 2 in such formulae as that for 

the area of a triangle. 
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KINETIC  THEORY  OF  GASES 

 

Though the potential and kinetic energy equations may, at first sight, appear to be 

contradictory expressions of the general principle of the conservation of energy, they 

can be easily reconciled if we consider the kinetic energy relation to be concerned 

with the action side of Newton’s third law, while the potential energy relation 

concerns both action and reaction. We can give many physical illustrations. To give a 

characteristic example, an old proof of Newton’s of the mv2 / r law for centripetal 

force, and hence of the formula mv2 for orbital potential energy, has the satellite 

object being ‘reflected’ off the circle of the orbit, in a polygon with an increasing 

number of sides, which, in the limiting case, becomes a circle. The imagined physical 

reflection, by doubling the momentum through action and reaction, then produces the 

potential energy, rather than kinetic, energy formula. 

 

Precisely the same principle applies in the derivation of Boyle’s law, from what we 

often call the ‘kinetic theory of gases’. Here, a real reflection of the ideal gas 

molecules off the walls of the container produces the momentum doubling, which 

indicates steady-state conditions, though it is immediately removed by the fact that we 

have to calculate the average time between collisions (t = 2a / v) as the time taken to 

travel twice the length of the container (a). The average force then becomes the 

momentum change / time = 2 mv / t = mv2 / a, and the pressure due to one molecule in 

a cubical container of side a becomes mv2 / a3, or mv2 / V (volume), leading for n 

molecules to the direct pressure-density relationship, which we call Boyle’s law. The 

kinetic behaviour of the ideal gas molecules is actually irrelevant to the derivation, 

since the system describes a steady-state dynamics with positions of molecules 

constant on a time-average. Taking into account the three dimensions between which 

the velocity is distributed, the ratio of pressure and density (P / ) is derived from the 

potential energy term mv2 for each molecule and is equal to one third of the average 

of the squared velocity, or c
−2 / 3.  So, the relationship could have been derived (as was 

done by Newton) using a mathematical model in which the molecule positions 

remained fixed. 

 

The kinetic behaviour only becomes significant when we introduce temperature as a 

measure of the average kinetic energy of the molecules of the gas. There is, however, 

no ‘derivation’ involved here, because temperature is not defined independently of 

this kinetic energy, and we are obliged to provide this definition by an explicit use of 

the virial theorem, to find the otherwise unknown average kinetic energy from the 

known potential energy. Assuming that the potential energy of each ideal gas 

molecule is kT for each degree of freedom, and, in total, 3kT, and taking the pressure 

law as equivalent to a dynamical system involving a constant force, we apply the 

virial theorem to obtain the kinetic energy expression (3kT / 2) for each of these 

molecules. 
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PHOTONS  AND  RADIATION  PRESSURE 

 

Photons, unlike material particles, are relativistic objects, so we might expect that the 

expressions for photon gases would be different in some respect from those for 

material gases. In fact, they are almost identical, as the radiation pressure of a photon 

gas within a fixed enclosure is one third of the energy density of radiation, that is: 

                P = 
1

3
 c2  . 

The photon, as a ‘gas’ component, thus behaves in exactly the same way as a material 

particle, and, because the system is in steady state, the energy term mc2 behaves as 

potential, not kinetic, energy, exactly as its form would suggest, with no mysterious 

‘relativistic factor’ at work, as proposed by some authors. The photons are reflected 

off the walls of the container in the same way as the material gas molecules, although 

this time we can also consider the process as involving absorption and re-emission. 

 

The whole reason for Einstein’s introduction of E = mc2 to represent the total energy 

of both photons and material particles was to preserve the classical laws of 

conservation of mass and conservation of energy. The total energy equation, unlike 

the change of energy formula E = mc2, cannot be derived, by deductive means, 

from the postulates of relativity; it depends entirely on the choice of an integration 

constant in the relativistic expression for rate of energy change: 

 

             
dT

dt
  = F.v  . 

  

No problem arises if we recognise that mc2 has a classical, as well as relativistic, 

meaning. Like many other significant results (the Schwarzschild radius, the equations 

for the expanding universe, the gravitational redshift, the spin of the electron), the 

expression does not arise from the theory of relativity itself but is a more fundamental 

truth which that theory has uncovered. 

 

It would be extraordinary, in fact, if relativistic conditions should somehow conspire 

exactly to halve or double significant classical quantities. Relativistic factors are 

typically of the form  = (1 – v2 / c2)–1/2, implying some gradual change when v → c, 

and it makes no physical sense to suppose that the transition involves discrete 

integers. E = mc2 is a relativistic equation because it incorporates the  factor in the 

m term, but E = mc2 is not, and, for photons at least, the effects which depend only 

on E = mc2 and not specifically on the 4-vector combination of space and time can be 

derived by classical approaches entirely independent of any concept of relativity. 

Examples of this can be found in calculations based on the classical corpuscular 

theory of light dating back to the seventeenth, eighteenth and nineteenth centuries, 

and are still used for practical purposes at the present day. We may mention, for 

example, Newton’s calculation of atmospheric refraction in 1694, and his application 
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of the formula for the velocity of waves in a medium to an optical aether in Query 21 

of the Opticks. Essentially, Newton’s formula, 

 

                       c = (E / )1/2 

 

where E is elasticity or pressure and  density, is an expression of the fact that the 

potential energy of the system of light corpuscles, or the aether that acts upon them, is 

equal to the work done at constant pressure as a product of pressure and volume. 

Newton’s elasticity of the aether is essentially the same as the modern energy density 

of radiation (c2), which is related by Maxwell’s classical formula of 1873 to the 

radiation pressure. Light necessarily gives a ‘correct’ result for such a calculation 

when travelling through a vacuum, because there is no source of dissipation, and the 

virial relation takes on its ideal form.  

 

PHOTONS  IN  A  GRAVITATIONAL  FIELD 

 

There are many further relations between photon and material particle dynamics, 

which will be significant to us. Although light in free space has velocity c, and, 

therefore, no rest mass or kinetic energy, as soon as you apply a gravitational field, 

the light ‘slows down’, and, at least behaves as though it can be treated as a particle 

with kinetic energy in the field. The same, of course, applies to photons in a plasma, a 

system which has often been used as an analogy to the Higgs mechanism for 

acquiring mass in particle physics. An example directly applicable to photons is the 

use of the standard Newtonian escape velocity (or kinetic energy) equation 

 

                               
mv2

2
  = 

GMm

r
 

 

to derive the Schwarzschild limit for a black hole, by purely classical means, as was 

done more than once in the eighteenth century. Assuming v → c, we derive  

 

                         r = 
2GM

 c2  

 

with no transition to a ‘relativistic’ value. 

 

A classic case of applying such a kinetic energy-type equation to light, is the 

derivation of the double gravitational bending, an effect often thought to be derivable 

only from the general relativistic field equations. We have been assured repeatedly, 

since Eddington’s measurement of 1919, that the double bending is a relativistic 

effect, and that ‘Newtonian’ calculations, using the principle of equivalence, yield 

only half the correct value, although several authors have shown that the effect can be 

derived also from special relativity. 
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The ‘Newtonian’ calculation, we are told, originating with Soldner in 1801, starts 

from the potential energy equation (modified for a hyperbolic orbit), according to the 

expression: 

                        mc2 = 
GMm (e – 1)

r
 , 

 

with e taken as the eccentricity of the hyperbolic orbit. Since 1 « e, the half-angle 

deflection becomes 

                       
1

e
 = 

GM

c2r
 , 

and the full angle deflection (in and out of the gravitational field) 

 

                                   
2

e
 = 

2GM

c2r
 . 

This is only half the general relativistic value. However, Soldner actually used the 

kinetic energy equation, 

                             
mc2

2
 = 

GMm (e – 1)

r
 , 

on the basis of Laplace’s prior use of it for calculating the black hole radius, and he 

would have obtained the ‘correct’ total deflection if he had used the double angle in 

calculating his integral! Soldner’s procedure was surely the correct one, for the case 

he was examining was that of an orbit in the process of formation (the reverse, in 

effect, of Laplace’s escape velocity), and not of an orbit in steady state. 

 

That a purely classical calculation of the light-bending is possible should not surprise 

us. Energy, in relativity, is, after all, defined to be consistent with its classical value in 

the case of a particle with no material component; and so relativity theory should not 

produce different energy equations to classical physics for light photons; it merely 

corrects our naïve understanding of what are steady-state and what are changing 

conditions. Of course, in the case of photons, we never see a material kinetic energy 

directly; the total energy balance means that it must be possible to treat it as though it 

does exist when the particle is ‘slowed down’ by a field. 

 

There are many cases where a ‘relativistic’ correction (either special or general) is 

presumed to ‘cause’ the doubling of a physical effect, but such examples, are not 

illustrations of the fact that the calculation of the doubling has to be done 

relativistically, but that relativity provides one way of incorporating the effect of 

changing conditions if we begin with the potential, rather than the kinetic, energy 

equation. In the case of gravitational bending, the potential energy equation typically 

produces the effect of gravitational redshift, or time dilation, while relativity adds the 

corresponding length contraction. So authors have variously argued for the redshift 

being ‘Newtonian’ while the length-contraction or ‘space-warping’ is relativistic, or 

for the length contraction being Newtonian while the redshift is relativistic. Claims 

have also been made that the ‘Newtonian’ effect has to be added to that produced by 
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the Einstein calculation of 1911, based on the equivalence principle (which also 

obtained only half of the correct value), or that the two effects are the same, and have 

to be supplemented by a ‘true’ relativistic effect, like the Thomas precession. All of 

these arguments are correct, but none is fundamental. The true reason is the choice of 

classical energy equation. If the potential energy equation is used where the kinetic 

energy equation is appropriate, then correct physical reasons can be found for almost 

any additional term which doubles the effect predicted. Even special relativity is only 

an alternative approach to a calculation that must also be valid classically, and the 

same applies to the even more famous case of the planetary perihelion precession. 

 

THE  GYROMAGNETIC  RATIO OF  THE  ELECTRON 

 

It has also been assumed that relativity is needed to explain the anomalous magnetic 

moment or, equivalently, the gyromagnetic ratio of a Bohr electron acquiring energy 

in a magnetic field. ‘Classical’ reasoning, we assured, would show the energy 

acquired by an electron changing its angular frequency from 0 to  in a magnetic 

field B to be of the form 

                m (2 – 0
2) = e0rB  , 

 

leading, after factorization of (2 – 0
2), to an angular frequency change 

 

                          = 
eB

2mr
 . 

 

However, a relativistic effect (the Thomas precession, again) ensures that the classical 

e0rB is replaced by 2e0rB, leading to 

 

                           = 
eB

mr
 . 

 

But, once again, relativistic and classical treatments coincide when, as with the light-

bending example, the kinetic energy equation is recognised as the one applied to 

changing conditions, at the instant we ‘switch on’ the field. Then, we automatically 

write 

              
1

2
 m(2 – 0

2) = e0rB  , 

 

which is no more, in principle, than the equation of motion for uniform acceleration 

 

                     v2 – u2 = 2as  . 

 

So, the Thomas precession or ‘relativistic’ correction is needed if we begin with the 

potential energy equation applicable to a steady state, but not if we apply the kinetic 

energy used for changing conditions. 
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ELECTRON  SPIN 

 

The gyromagnetic ratio is, of course, produced ultimately by the electron spin, which 

is one of the most famous cases of the factor ½. Traditionally, this is derived from the 

relativistic Dirac equation by consideration of the commutator 

 

                                        [̂, H] = [̂, i0.p + 0m] . 

 

Purely formal reasoning shows that this reduces to 20   p, or in our multivariate 

vector terminology (equivalent to Pauli matrices), to 2ij 1  p. The significant thing 

here is that the factor 2 emerges from the anticommuting properties of the vector 

operators in an equation such as 

         [̂, H] = 2j (ijp2 + ikp3 + jip1+ jkp3 + kip1 + kjp2) . 

Ultimately, this leads to 

                                                      [L + ̂ / 2, H] = 0 . 

where L is the orbital angular momentum, from which we find that (L + ̂ / 2) is a 

constant of the motion. 

 

There is, however, a way of deriving the same result (at least in its manifestation in 

the presence of a magnetic field) from the Schrödinger equation, which can easily be 

shown to be a nonrelativistic limit to the bispinor form of the Dirac equation. In 

principle, this should mean that the spin ½ term that arises from the Dirac equation 

has nothing to do with the fact that the equation is relativistic, but is a result of the 

fundamentally multivariate nature of its use of the momentum operator, as the formal 

derivation from the Dirac equation would suggest. 

 

It is significant that the standard derivation of the Schrödinger equation begins with 

the classical expression for kinetic energy, p2 / 2m = mv2 / 2. 

 

                 T = (E − V)  = 
p2

2m
 , 

 

followed by substitution of the quantum operators E = i  / t and p = – i , acting on 

the wavefunction , for the corresponding classical terms, to give: 

 

                                              (E − V)   = − 
1

2m
 2  

or 

                     i 


t
  − V  = − 

1

2m
 2 , 

 

in the time-varying case. Various authors [e.g. Gough, 1990] have shown that, using a 

multivariate operator, p = –i + eA, in the absence of scalar potential V, we derive: 
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              2mE = (–i + eA) (–i + eA)  

 

leading ultimately, by a relatively easy derivation, to 

 

          2mE = (–i + eA).(–i + eA)  + 2m .B , 

 

which is the conventional form of the Schrödinger equation in a magnetic field for 

spin up, supplied by the usual ad hoc addition of Pauli matrices, and a similar 

expression may be derived from the spin down state. The 2 in the expression 2m .B 

arises from the anticommuting properties of the multivariate vectors. In effect, spin is 

purely a property of the multivariate nature of the p term, and has nothing to do with 

whether the equation used is relativistic or not. (This is equivalent to stating the well-

known fact that the 4 rotation involved in spin is purely a property of the rotation 

group.) We also see that the factor 2 is both introduced with the transition in the 

Schrödinger equation from the classical kinetic energy term, and, at the same time, 

produced by the anticommuting nature of the momentum operator. It is precisely 

because the Schrödinger equation is derived via a kinetic energy term that this factor 

enters into the expression for the spin, and this process is essentially the same as the 

process which, through the anticommuting quantities of the Dirac equation, makes (L 

+ ̂ / 2) a constant of the motion. 

 

THE  HARMONIC  OSCILLATOR  AND  HEISENBERG  UNCERTAINTY 

 

The Schrödinger equation also allows an easy calculation of the eigenvalues of the 

quantum harmonic oscillator, in which a varying potential energy term, ½ m2x2, 

taken from the classical kinetic energy term ½ mv2, is added to the Hamiltonian. A 

formal derivation is hardly necessary to show that the ½ in the expression for the 

ground state or ‘zero-point’ energy, 

 

                          E0 = 
h̄
2

  , 

 

carries over directly from this original introduction. 

 

Anticommuting operators also introduce the factor 2 in the Heisenberg uncertainty 

relation for the same reason as they do in the treatment of electron spin, and the 

Heisenberg term also relates directly to the zero-point energy derived from the kinetic 

energy of the harmonic oscillator. The formal derivation of the uncertainty principle 

assumes a state represented by a state vector  which is an eigenvector of the operator 

P. If Q is an operator which anticommutes with P, we derive 

 

                                   (p) (q)  (1/2) [P,Q]  h̄  / 2 
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where the factor 2 in comes from the noncommutation of the p operator. 

 

BOSONS  AND  FERMIONS 

 

The origin of the factor 2 in the spin states of fermions and bosons, is, once again, the 

virial relation between kinetic and potential energies. In our reformulation of the 

Dirac equation for fermions, we take the classical relativistic energy-momentum 

conservation equation: 

           E2 – p2c2 – mo
2c4 = 0  ,     

 

where mo is rest mass, and factorize using our quaternion-multivariate-4-vector 

operators to give: 

         ( kE  ii p + ij mo) ( kE  ii p + ij mo) = 0 . 

We then apply the Correspondence Principle to obtain 

        








 ik


t
  i + ijmo    =  0 , 

where 

    = ( kE  ii p + ij mo) e
-i(Et - p.r)  . 

for a fermion. We can proceed to show that a spin 1 boson wavefunction 

(incorporating fermion-antifermion combination) is the sum of 

 

 (kE + ii p + ij mo) (−kE + ii p + ij mo) 

 (kE − ii p + ij mo) (−kE − ii p + ij mo)  

 (−kE + ii p + ij mo) (kE + ii p + ij mo)  

 (−kE − ii p + ij mo) (kE − ii p + ij mo) 

 

while a spin 0 boson reverses the signs of p in the second column. The fermion 

wavefunction is effectively a nilpotent or square root of 0, and the boson 

wavefunction a product of two nilpotents (each not nilpotent to the other). 

 

From both Dirac and Schrödinger equations, effectively describing kinetic energy 

states, we see that fermions have half-integral spins. The Klein-Gordon equation, 

which applies to bosons, however, is the potential energy equation, based on E = mc2, 

where m is now the ‘relativistic’, rather than the rest mass, and bosons derive their 

integral spin values from the fact that the energy term in this equation contains unit 

values of the mass m. Here, we quantize the classical relativistic energy-momentum 

equation directly, to obtain 

                 
2

t2  – 2 = m2 ,     

in units where h̄ = c = 1. 
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The difference between the fermion and boson cases is that we use the kinetic energy 

relation when we consider a particle as an object in itself, described by a rest mass m0, 

undergoing a continuous change; and the potential energy relation when we consider a 

particle within its ‘environment’, with ‘relativistic mass’, in an equilibrium state 

requiring a discrete transition for any change. Kinetic energy is associated with rest 

mass, because it cannot be defined without it – light ‘slowing down’ in a gravitational 

field or condensed matter is effectively equivalent to adopting a rest mass. Potential 

energy is associated with ‘relativistic’ mass because the latter is defined through a 

potential energy-type term (E = mc2), light in free space being the extreme case, with 

no kinetic energy or rest mass, and 100 per cent potential energy or relativistic mass. 

 

The description is also related to the halving process that occurs, for a material 

particle, when we expand its relativistic mass-energy term (mc2) to find its kinetic 

energy (½ mv2). So we can take the relativistic energy conservation equation 

 

 E – mc2
 = E2 – p2c2 – mo

2c4 = 0  .     

 

as a ‘relativistic’ mass or potential energy equation, treating at one go the particle 

interacting with its environment, and proceed to quantize to a Klein-Gordon equation, 

with integral spin. Or, we can separate out the kinetic energy term using the rest mass 

mo, and take the square root of 

  E2 = mo
2c4 









1 – 
v2

c2  –1 , 

to obtain 

  E = moc
2 + 

mov
2

2
 + … . 

  

from which, as we have seen, we derive the Schrödinger equation, and spin ½.. The ½ 

is, indeed, a statement of the act of square-rooting, which is precisely what happens 

when we split 0 into two nilpotents in the Dirac equation; the ½ in the Schrödinger 

approximation is a manifestation of this which we can trace through the ½ in the 

relativistic binomial approximation. The origin of the same factor in the derivation of 

spin from the Dirac equation, is seen in the behaviour of the anticommuting terms 

which result from the process of taking the nilpotent: the anticommuting and 

binomial factors have precisely the same origin. 
 

ZERO  POINT  ENERGY  AND  RADIATION  REACTION 

 

The significance of the factor 2 in all our examples lies in the fact that it relates 

together two parallel but almost independent streams of physics: the continuous and 

the discontinuous. Expressions involving half units of h̄ represent an average or 

integrated increase from 0 to h̄. The half-values are characteristic of the continuous 

option in physics, the integral ones of the discontinuous option. Schrödinger and 

Heisenberg are examples of these options; and yet another completely continuous 
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theory, stochastic electrodynamics, based on the existence of zero-point energy of 

value h̄ / 2, has developed as a rival to the purely discrete theory of the quantum 

with energy h̄. 

 

The discrete and continuous options are not only possible, but actually required 

within a system. Each type of system has to incorporate the alternative option in some 

way. Schrödinger, for instance, has a continuous system based on ½ h̄, but 

incorporates discreteness (based on h̄) in the process of measurement – the so-called 

collapse of the wavefunction. Heisenberg, on the other hand, has a discrete system, 

based on h̄, but incorporates continuity (and ½ h̄) in the process of measurement – via 

the uncertainty principle and zero-point energy. Nature, it would seem, always 

manages to provide a route by which ½ h̄ in one context becomes h̄ in another. A 

characteristic example is black-body radiation, where the spontaneous emission of 

energy of value h̄ is produced by the combined effect of the ½ h̄  units of energy 

provided by both oscillators and zero-point field. 

 

The ½ h or ½ h̄ for black body radiation appears in both the theories of Planck, of 

1911, and of Einstein and Stern, of 1913. In quantum mechanics, as we have seen, the 

zero-point energy term is derived from the harmonic oscillator solution of the 

Schrödinger equation, while, in the Heisenberg formulation, it appears as a result of 

the  ½ h̄ term involved in the uncertainty principle. While the derivation via 

Schrödinger shows the kinetic origins of the factor 2, the derivation from the 

uncertainty principle suggests an origin in continuum physics. 

 

The ½ h̄ → h̄ transition for black body radiation can also be seen in terms of 

radiation reaction. Rather surprisingly, perhaps, this is again connected with the 

distinction between the relativistic and rest masses of an object. When we define a 

rest mass we effectively define an isolated object, and we cannot define kinetic 

energy in terms of anything but this rest mass. If, however, we take a relativistic 

mass, we are already incorporating the effects of the environment. In the case of a 

photon, which has no rest mass, and only a relativistic mass, the energy mc2 behaves 

exactly like a classical potential energy term, for example as a component of a photon 

gas producing the radiation pressure c2 / 3. Action and reaction occurs in this 

instance because the doubling of the value of the energy term comes from the 

doubling of the momentum produced by the rebound of the photons from the walls of 

the container, or absorption and re-emission. The same thing happens with radiation 

reaction, which produces an otherwise ‘mysterious’ doubling of energy from ½ h to 

h. In a different context, Feynman and Wheeler produce a doubling of the 

contribution of the retarded wave in electromagnetic theory, at the expense of the 

advanced wave, by assuming that the vacuum behaves as a perfect absorber and 

reradiator of radiation. 
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It seems that incorporating radiation reaction means that we are also incorporating the 

effect of Newton’s third law, as in the case of many other processes. However, many 

of the same results, as in the parallel case of the anomalous magnetic moment of the 

electron, are also explained by special relativity. C. K. Whitney [2000] has argued 

that the correct result for the electron is obtained, without relativity, by treating the 

transmission of light as a two-step process involving absorption and emission, which, 

in our terms, is equivalent to incorporating action and reaction, or the potential energy 

equation, and, as we have seen, the same result follows classically by defining the 

potential energy at the moment the field is switched on. If, however, we use kinetic 

energy, or a one-step process, we also need relativity, because, once we introduce rest 

mass, we can no longer use classical equations. (‘Relativistic mass’ is, of course, 

specifically designed to preserve classical energy conservation!) The two-step process 

is analogous to the use of radiation reaction, so it follows, in principle, that a radiation 

reaction is equivalent to adding a relativistic ‘correction’ (such as the Thomas 

precession). 

 

Whitney argues further that the two-step process removes those special relativistic 

paradoxes which involve apparent reciprocity, which is interesting, because special 

relativity, by including only one side of the calculation, effectively removes 

reciprocity, and so leads to such things as asymmetric ageing in the twin paradox. 

Similar arguments also apply to the idea that the problem lies in attempting to define a 

one-way speed of light that cannot be measured, because a two-way speed 

measurement of the speed of light also requires a two-step process. 

 

OBJECT  PLUS  ENVIRONMENT 

 

We have already proposed that the factor 2 originates in the symmetry between the 

action of an object and the reaction of its environment. While a fermionic object on 

its own shows changing behaviour, requiring an integration which generates a factor 

½ in the kinetic energy term, and a sign change when it rotates through 2, a 

conservative ‘system’ of object plus environment shows unchanging behaviour, 

requiring a potential energy term, which is twice the kinetic energy. 

 

Taking ‘environment’ to apply to either material or vacuum, we can makes sense, not 

only of the boson / fermion distinction and the spin 1 / ½ division in a fundamental 

way, but also understand such concepts as supersymmetry, vacuum polarization, pair 

production, renormalization, zitterbewegung, and so on, because the halving of energy 

in ‘isolating’ the fermion from its vacuum or material ‘environment’ is the same 

process as mathematically square-rooting the quantum operator via the Dirac 

equation. Integral spins may be automatically produced from half-integral spin 

electrons using the Berry phase, and, by generalizing this kind of result to all possible 

environments, we may extend the principle in the direction of supersymmetry. In 

principle, we propose that energy principles determine that all fermions, in whatever 
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circumstances, may be regarded either as isolated spin ½ objects or as spin 1 objects 

in conjunction with some particular material or vacuum environment, or, indeed, the 

‘rest of the universe’. 

 

In this context, fermions with spin ½ become spin 1 particles when taken in 

conjunction with their environment, whatever that may be. The Jahn-Teller effect and 

Aharonov-Bohm effect are examples. Treated semi-classically, the Jahn-Teller effect 

couples the factors associated with the motions of the electronic and nuclear 

coordinates so that different parts of the total wave function change sign in a 

coordinated manner to preserve the single-valuedness of the total wave function.  

 

In more general terms, we can consider a similar relationship existing between a 

fermion and ‘the rest of the universe’, the total wavefunction representing fermion 

plus ‘rest of the universe’ being necessarily single-valued, and automatically 

introducing the extra term known as the Berry phase. This duality occurs with the 

actual creation of the fermion state. Splitting away a fermion from a ‘system’ (or ‘the 

universe’), we have to introduce a coupling as a mathematical description of the 

splitting. The reverse effect must also exist, with bosons of spin 0 or 1 coupling to an 

‘environment’ to produce fermion-like states. Perhaps the Higgs mechanism occurs in 

this way, but a more immediate possibility is the coupling of gluons to the quark-

gluon plasma to deliver the total spin of ½ or 3/2 to a baryon. 

 

Fermions and bosons, it would seem, always produce a ‘reaction’ within their 

environment, which couples them to the appropriate wavefunction-changing term, so 

that the potential / kinetic energy relation can be maintained at the same time as its 

opposite. The whole process of renormalization depends on an infinite chain of such 

couplings through the vacuum. The coupling of the vacuum to fermions generates 

‘boson-images’ and vice versa. 

 

RENORMALIZATION  AND  SUPERSYMMETRY 

 

To understand the principle of renormalization, we need to use the nilpotent version 

of the Dirac wavefunction, which is, typically, (kE + iip + ijm) for a fermion and (–

kE + iip + ijm) for an antifermion, these being abbreviated representations of 4-term 

bra and ket vectors, cycling through the full range of E and p values. In terms of 

the ‘environment’ principle, a fermion generates an infinite series of interacting terms 

of the form: 

 

(kE + iip + ijm) 

(kE + iip + ijm) (–kE + iip + ijm) 

(kE + ikp + ijm) (–kE + iip + ijm)( kE + iip + ijm) 

(kE + iip + ijm) (–kE + iip + ijm)( kE + iip + ijm) (–kE + iip + ijm), etc. 
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The (kE + iip + ijm) and (–kE + iip + ijm) vectors are an expression of the behaviour 

of the vacuum state, which acts like a ‘mirror image’ to the fermion. An expression 

such as 

 

    (kE + iip + ijm) k (kE + iip + ijm) 

 

is part of an infinite regression of images of the form 

 

(kE + iip + ijm) k (kE + iip + ijm) k (kE + iip + ijm) k (kE + iip + ijm) ...  

 

where the vacuum state depends on the operator that acts upon it, the vacuum state of 

(kE + iip + ijm), for example, becoming k (kE + iip + ijm). In addition, 

 

(kE + iip + ijm) k (kE + iip + ijm) k (kE + iip + ijm) k (kE + iip + ijm) ...  

 

is the same as 

 

(kE + iip + ijm) (–kE + iip + ijm) (kE + iip + ijm) ( –kE + iip + ijm) ... . 

 

It thus appears that the infinite series of creation acts by a fermion on vacuum is the 

mechanism for creating an infinite series of alternating boson and fermion states as 

required for supersymmetry and renormalization. The ‘mirror imaging’ process 

implies an infinite range of virtual E values in vacuum adding up to a single finite 

value, exactly as in renormalisation, with equal numbers of boson and fermion loops 

cancelling through their opposite signs. 

 

This fundamental relation also leads to the significant fact that the nilpotent 

wavefunctions, in principle, produce a kind of supersymmetry, with the 

supersymmetric partners not being so much realisable particles, as the couplings of 

the fermions and bosons to vacuum states. The nilpotent operators defined for fermion 

wavefunctions are, in fact, also supersymmetry operators, which produce the 

supersymmetric partner in the particle itself. The Q generator for supersymmetry is 

simply the term (kE + iip + ijm), and its Hermitian conjugate Q† is (–kE + iip + ijm). 

Multiplying by (kE + iip + ijm) converts bosons to fermions, or antifermions to 

bosons (the p can, of course, be + or –). Multiplying by (–kE + iip + ijm) produces the 

reverse conversion of bosons to antifermions, or fermions to bosons. 

 

In this context, while the spin ½ state is that of the isolated fermion, and due to 

kinetic energy, implying continuous variation, unit spin comes from the potential 

energy of a stable state, and represents either a boson with two nilpotents (which are 

not nilpotent to each other), or a bosonic-type state produced by a fermion interacting 

with its material environment or vacuum, and, as a consequence, manifesting Berry 

phase, Aharonov-Bohm or Jahn-Teller effect, Thomas precession, relativistic 
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correction, radiation reaction, quantum Hall effect, Cooper pairing, zitterbewegung, 

or whatever else is needed to produce the ‘conjugate’ environmental spin state. The 

isolated fermion thus represents the action half of Newton’s third law, while in the 

case of the fermion interacting with its environment, it is the action and reaction pair. 

The existence of a ‘supersymmetric’ partner seemingly comes from the duality 

represented by the choice of fermion or fermion plus environment. 

 

THE  AHARONOV-BOHM  EFFECT 

 

A consideration of the Aharonov-Bohm effect suggests that it may lead to a more 

profound understanding of the meaning of the factor 2 in fundamental physics. In this 

effect, electron interference fringes, produced by a Young’s slit arrangement, are 

shifted by half a wavelength in the presence of a solenoid whose magnetic field, 

being internal, does not interact with the electron but whose vector potential does. 

The half-wavelength shift turns out to be a feature of the topology of the space 

surrounding the discrete flux-lines of the solenoid, which is not simply-connected, 

and cannot be deformed continuously down to a point. Effectively, the half-

wavelength shift, or equivalent acquisition by the electron of a half-wavelength Berry 

phase, implies that an electron path between source and slit, round the solenoid, 

involves a double-circuit of the flux line (to achieve the same phase), and a path that 

goes round a circuit twice cannot be continuously deformed into a path which goes 

round once (as would be the case in a space without flux-lines). 

 

The presence of the flux line is equivalent, as in the quantum Hall effect and 

fractional quantum Hall effect, to the extra fermionic ½-spin which is provided by the 

electron acting in step with the nucleus in the Jahn-Teller effect and makes the 

potential function single-valued, and the circuit for the complete system a single loop. 

It is particularly significant that the U(1) (electromagnetic) group responsible for the 

fact that the vacuum space is not simply connected is isomorphic to the integers under 

addition. In effect, the spin-½, ½-wavelength-inducing nature of the fermionic state 

(in the case of either the electron or the flux line) is a product of discreteness in both 

the fermion (and its charge) and the space in which it acts. In principle, the very act of 

creating a discrete particle requires a splitting of the continuum vacuum into two 

discrete halves (as with the bisecting of the rectangular figure with which we started, 

or, in another context, the Dedekind cut, which defines the relation between real and 

rational numbers), or (relating the concept of discreteness to that of dimensionality) 

two square roots of 0. Mathematically, the identification of 1 as separate from 0 also 

implies that 1 + 1 = 2, reflecting the fact that physics and mathematics have a 

common origin in the process of counting. 
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THE  ORIGINS  OF  THE  FACTOR  2 

 

The numerical factor 2 has become an almost universal component of fundamental 

physics, playing a significant role in both quantum theory and relativity. Its origin and 

meaning can be explained in surprisingly simple terms, using relatively 

unsophisticated mathematics. We see it in terms of either action and reaction (A); 

commutation relations (C); absorption and emission (E); object and environment (O); 

relativity (R); the virial relation (V); or continuity and discontinuity (X). The overlap 

between many of these explanations in the case of individual phenomena 

demonstrates that they are really all part of the same overall process: 

 

 Kinematics         V X 

 Gases    A     V 

 Orbits    A     V X 

 Radiation pressure   A  E   V 

 Gravitational light deflection       R V 

 Fermion / boson spin    C  O R V 

 Zero-point energy   A C    V X 

 Radiation reaction   A  E  R V 

 SR paradoxes   A  E 

 

For example, kinetic energy variation may be thought of as continuous, but starting 

from a discrete state; potential energy variation, on the other hand, is a discrete 

variation, starting from a continuous state. Each creates the opposite in its variation 

from itself. Kinetic energy and potential energy create each other, in the same way as 

they are related by a numerical relationship. But kinetic energy also relates to a 

changing state, while potential energy is usually related to a fixed one. We can further 

consider the kinetic energy relation to be concerned with the action side of Newton’s 

third law, while the potential energy relation concerns both action and reaction. The 

factor 2 is also an expression of the discreteness of both material particles (or charges) 

and the spaces between them, as opposed to the continuity of the vacuum in terms of 

energy. The same discreteness also implies (though more subtly) the concept of 

dimensionality, which is responsible for the noncommutativity of the momentum 

operator, as well as the discreteness of the division of rectangles into triangles. 

 

In more general terms, the factor 2 is an expression of a fundamental duality in the 

whole concept of ‘nature’, a duality that is the result of trying to create something 

from nothing – the Aharonov-Bohm effect is a classic case, as is also the nilpotent 

algebra used for the fermion wavefunction. Fundamentally, physics does this when it 

sets up a probe to investigate an intrinsically uncharacterizable nature. Nature 

responds with symmetrical opposites to the characterization assumed by the probe, 

which, in its simplest form, is constituted by a discrete point in space. It has been 

demonstrated previously that this generates a symmetrical group of fundamental 
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parameters (space – the original probe – time, mass and charge – the combined 

response), which are defined by properties which split the parameters into three C2 

groupings, depending on whether they are conserved or nonconserved, real (or 

orderable) or imaginary (or nonorderable), continuous or discrete. Each of these 

divisions may be held responsible for a factor 2, for duality seems to be the necessary 

result of any attempt to create singularity. 

 

 space real  nonconserved      countable (3-D) 

 time    imaginary   nonconserved      noncountable (1-D) 

 mass     real        conserved         noncountable (3-D) 

 charge   imaginary   conserved         countable (1-D) 

 

Careful study of the factor 2 reveals that it is either the link between the continuous 

and discrete physical domains, or between the changing and the fixed, or the real and 

imaginary (orderable and nonorderable), the three dualities of the group, and, in every 

physical instance, between more than one of these. 

 

While the continuous v. discrete duality is obvious from the distinction between 

potential and kinetic energies, this distinction also incorporates the duality between 

conserved and nonconserved quantities, or fixed and changing conditions. The duality 

may also be expressed in terms of the distinction between space-like and time-like 

theories (for example, those of Heisenberg and Schrödinger, or of quantum mechanics 

and stochastic electrodynamics), which are not only distinguished by being discrete 

and continuous, but also by being real and imaginary. Though a single duality 

separates such theories, it is open to more than one interpretation because each pair of 

parameters is always separated by two distinct dualities. 

 

THE  STRUCTURE  OF  DUALITY 

 

At the most profound level, as we have said, the factor 2 is an expression of the 

fundamental nature of duality, in physics, mathematics, and even ontology and 

epistemology. In simple terms, we can’t define something without defining also what 

it is not, and we can’t even characterize ‘nature’ or ‘reality’, even to the extent of 

saying whether it has an independent existence (is ontological) or is a product of our 

perception (is epistemological). It is possible to explain this on the basis that physics 

and mathematics are attempts at creating something from nothing. A ‘theory of 

everything’ needs first to be a ‘theory of nothing’. We start from ‘nothing’ and we end 

with ‘nothing’, and duality is there to ensure that when we introduce ‘something’, we 

still end with nothing. But this does not mean that we cannot determine its structure. 

The fundamental duality operates in the most simple way possible. 

 

We begin with the simplest possible symmetry group, C2, which we can describe in 

mathematical terms, by the use of the elements 1 and –1, but which, physically, is just 
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anything and its opposite. Thus, as soon as we imagine 1 as different from 0, we also 

invoke its automatic negation, or the thing we describe as –1. So, defining 1, at all, 

automatically creates a dual system, equivalent to requiring 1 + 1 = 2, and generating 

the Peano idea of ‘successor’. This seemingly leads to the creation of a natural 

(binary) numbering system, while avoiding the Gödel problem through the zero 

totality. (Work on this, and on programming aspects, is in progress with B. M. Diaz.) 

We also have no option but to relate –1 to 1 in some way other than defining their 

totality as 0, and the identity –1 × –1 or (–1)2 = 1 then becomes deeply significant in 

establishing that the relation between these elements is a group relationship, and that 

the ‘multiplication’ and ‘squaring’ of elements, in addition to identity and inversion, 

are operations which are fundamental to the principle of duality. 

 

However, we require a dual, even for this C2 group. We need to extend to four 

elements, to find an equivalent to C2 × C2. The only way of extending the original 

group is if the two unknown elements acquire the characters that we describe by the 

symbols i and –i. Though the group of 1, –1, i, –i is not, of course, C2 × C2, but C4, it 

contains the same information as C2 × C2, for we can write this information in the 

form of the complex ordered pairs: 1, i; 1, –i; –1, i; –1, –i, which is of the form C2 × 

C2, and is the natural mathematical expression of complex numbers. 

 

To dual again, we need to imagine another complexification, involving, new terms, 

which we could describe as j and –j. However, we now have the complication of the 

product ij, which must be yet another new term. The result of this process is the 

definition of the necessarily cyclic and noncommutative operators i, –i, j, –j, k, –k, 

which we describe as quaternions. The definition of the quaternion group Q8, with 

elements 1, –1, i, –i, j, –j, k, –k, is simply a statement of the fact that the complex C4 

group has been dualistically extended, and, we can, again, represent the same 

information by a C2 multiplication, using a group of the form C2 × C2 × C2. 

 

Continuing the process further, we dual Q8 by complexifying it to the complex 

quaternion or multivariate ‘vector’ group 1, –1, i, –i, i, –i, j, –j, k, –k, ii, –ii, ij, –ij, ik, 

–ik, of order 16, which has a related C2 × C2 × C2 × C2 formulation, and which may 

also be written 1, –1, i, –i, ii, ii, ij, –ij, ik, –ik, i, –i, j, –j, k, –k, where a complex 

quaternion, such as ii becomes the equivalent of the multivariate vector i (see 

Appendix I). (The alternative dualling of quaternions to octonions, with sixteen 

components, fails the test of group structure, as octonions are nonassociative.) We 

then expand the complex terms to a three-dimensional status, to produce a double 

quaternion group, say 1, –1, I, –I, J, –J, K, –K, i, –i, j, –j, k, –k, of order 32, which has 

a related C2 × C2 × C2 × C2 × C2 formulation. Then we complexify again, to produce a 

multivariate vector-quaternion group 1, –1, i, –i, ii, –ii, ij, –ij, ik, –ik, i, –i, j, –j, k, –

k, i, –i, j, –j, k, –k, ii, –ii, ij, –ij, ik, –ik, and 36 real and complex combinations of 

vectors and quaternions, forming a group of 64, with a related C2 × C2 × C2 × C2 × C2 

× C2 formulation. This is the algebra of the Dirac gamma matrices. Though further 
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dualling is possible on the same basis, it is clear that only three fundamental principles 

are required to continue the dualling to infinity – opposite signs (or equivalent), the 

distinction between real and imaginary components, and the introduction of cyclic 

dimensionality – and to establish every conceivable combination of these, that is to 

establish that every type of dualling is itself dualled, requires a group of 64 elements. 

Thus, the Dirac algebra includes a dualling of each of the dualling processes within 

itself, the eight groups of objects involved producing every possible combination of + 

/ –  real / complex  nondimensional / dimensional: 

 

C2 C2  1 

C4 C2  C2  1,  i  complexify 

Q8 C2  C2  C2 1,  i,  j,  k dimensionalize 

V16 C2  C2  C2  C2  1,  i,  i,  j,  k complexify 

QQ32 C2  C2  C2  C2  C2  1,  I,  J,  K,  i,  j,  k dimensionalize 

VQ64 C2  C2  C2  C2  C2  C2  1,  i,  I,  J,  K,  i,  j,  k complexify 

 

Though this appears to be a purely mathematical argument, in fact, it has a 

fundamental physical significance, in relation to the properties of the fundamental 

parameter group, for we can see now that two of the distinctions between the 

parameters, which we have derived inductively from observed physical characteristics 

(real / imaginary and noncountable / countable), are identical to the C2 distinctions 

which extend the original C2 duality into complexity and cyclic dimensionality. 

(Particularly significant, here, is the fact that countability or discreteness is a 

necessary requirement for cyclic multidimensionality, for unidimensionality is an 

obviously necessary property of a continuous or noncountable quantity – it can’t have 

an origin. Multidimensionality is also a necessary property of discreteness, which has 

to have a reference or origin.) However, even the original C2 duality (1 / –1) 

originated from the act of creating ‘something from nothing’ (1 from 0), the very 

definition of nonconservation, as is the concept of ‘successor’ which it implies. So, in 

principle, the group of space, time, mass and charge has all the elements required to 

extend physical duality to infinity. 

 

And, when we express the parameters mass, time, space, and charge in terms of the 

respective scalar, pseudoscalar, vector and quaternion units (1, i, i, j, k, i, j, k), which 

their combined properties require, it becomes evident that the combination of the four 

parameters in the Dirac equation produces the complete self-dualling which we 

require. In addition, the Dirac nilpotent is the perfect way of producing something 

from nothing; its structure effectively incorporates or generates all the discrete and 

continuous groups of interest in fundamental physics, from C2 to E8 [Rowlands, 

Cullerne and Koberlien, 2001]; while the infinite imaging of the fermion state in the 

vacuum and the infinite entanglement of all nilpotent fermion states extend the 

dualling to infinity. 
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From the construction of dualities in terms of successive C2 applications, it is possible 

to see why, in general, the constant terms in alternative approaches to physical 

explanation produce effects which are 2 × the changing terms, the real produce ones 

which are 2 × the imaginary, and the discrete ones which are 2 × the continuous: the 

multiplication occurs in the direction which doubles the options. The first combines + 

and – cases where it remains constant; the second involves squaring imaginary 

parameters to produce real ones; and the third combines dimensionality and 

noncommutivity with discreteness, and so doubles the elements. Examples of the first 

include action + reaction, absorption + emission, radiation + reaction, potential v. 

kinetic energy, relativistic v. rest mass, uniform v. uniformly accelerated motion, and 

rectangles v. triangles. Examples of the second include bosons v. fermions, and space-

like v. time-like systems. Examples of the third include fermion + ‘environment’ 

(Aharonov-Bohm, Berry phase, Jahn-Teller, etc.), space-like v. time-like systems, 

particles v. waves, Heisenberg v. Schrödinger / the harmonic oscillator, quantum 

mechanics v stochastic electrodynamics / zero point energy; 4 v. 2 rotation, and all 

cases in which physical dimensionality or noncommutativity is involved. 

 

The very concept of duality also implies that the actual processes of counting and 

generating numbers are created at the same time as the concepts of discreteness, 

nonconservation, and orderability are separated from those of continuity, 

conservation, and nonorderability. The mathematical processes of addition and 

squaring are, in effect, ‘created’ at the same time as the physical quantities to which 

they apply, while all the other fundamental mathematical concepts and processes (e.g. 

the Dedekind cut) are, in some way, defined by dualling. The factor 2 thus expresses 

dualities which are fundamental to the creation of both mathematics and physics, and 

duality provides a philosophy on which both can be based. 
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