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Abstract. A brief history is given of the factor 2, starting in the most elementary
considerationsf geometry and the kinematics of uniform acceleration, and moving to
relativity, quantum mechanics and particle physics. The basic argument is that in all
the significant cases in which the factor 2 or Y2 occurs in fundamental physics,
whetherclassical, quantum or relativistic, the same physical operation is taking place.

1 Geometry and kinematics

We probably first come across the factor 2 in the formulafor the triangle:

lengthof base x perpendicular height
area = > .

This is an ancient formula, well-known to Egyptian, Babylonian and Chinese
mathematiciansIn the case of a right-angled triangle, it is clearly created by
bissectinga rectangle along a diagonal. If we now take this as representing a straight-
line graph, of, say, velocity against time, under a uniform acceleration, the area under
the graph becomes the distance travelled. For an object increasing its velocity
uniformly from O to a value Vv in time interval t, the area under the graph, or distance
travelled,using the triangle formula, becomes vt/ 2. By comparison, if the object had
travelledat steady speed Vv throughout the time interval t, the distance travelled would
be the area of the rectangle under the horizontal straight line representing steady Vv,
that is, vt. In effect, the factor 2 distinguishes here between steady conditions and
steadilychangingconditions.

It was by this means that the factor first entered into physics from pure
mathematics,via the Merton mean speed theorem, evolved in fourteenth-century
Oxford. This result, which ultimately proved to be the foundation theorem of modern
dynamics, showed that the total distance moved by a body during uniform
accelerationwas the same as that covered during the same time interval by a body
travelling uniformly at the speed measured at the middle instant of the accelerated
motion.In more modern terms, the total distance travelled under uniform acceleration
mustequal the product of the mean speed and the time. Mathematically, if we start
with initial speed u and steadily accelerate to a final speed v over the time interval t,
thenthe total distance travelled will be given by



(U+v)t
S= 2 )

This is, of course, identical to the value we would obtain from our straight line graph
if we took the area under the graph between U and V as the sum of a rectangle (ut) and
atriangle ((v—u) t/2), and reduces to vt/ 2 when u= 0.

If we additionally use the definition of uniform acceleration, a = (v —u) / t, we
obtainthe well-knownequation for uniformly accelerated motion:

V2 = U2 + 2as,

which reduces to V¥ = 2as when u = 0. If we now apply this to a body of mass m,
actedon by a uniform force F = ma, we find the work done over distance Sis equal to
thekinetic energy gained

m/  muf

Fs=mas= 5 oo

which reduces to mV / 2 if we start at zero speed. Using p = mV to represent
momentum,it is convenient also to express this formula in the form p2 / 2m. Of
course,this formula applies more generally than in the case of purely uniformly
acceleratednotion, and we may derive the more general formula for nonuniformly
acceleratedhotion by a simple integration of force (dp/ dt) over displacement:

f%? ds:fmvdv:mTVZ.

However, the example of uniform acceleration, treated graphically, shows, in a
strikingly simple manner, the origin of the factor of 2 in a process of averaging over
changingeconditions. In this context, the factor 2 relates together the two main areas of
dynamicalphysics: those of accelerated and unaccelerated straight line motion. For
the case of zero initial velocity, the distance travelled under uniform acceleration can
be represented as the area of a triangle on a v-t graph compared with the rectangle
representinganiform velocity. In effect, a steady increase of velocity from 0 to v
requires an averaging out which halves the values obtained under steady-sState
conditions.

2 Kinetic and potential energy

It is in precisely the same way that the factor 2 makes its appearance in molecular
thermodynamicsquantum theory and relativity. It is, in a sense, the factor which
relatesthe continuous aspect of physics to the discrete, and, as both these aspects are
requiredin the description of any physical system, the factor acquires a universal



relevance.The most obvious classical manifestation is the fact that two types of
energyequation are commonly used in physics, both of which are expressions of the
generallaw of conservation of energy, but each of which expresses this fundamental
truth in a subtly different way. One is the potential energy equation representing
steady-stateconditions, which applies wherever there is no overall change in the
energy distribution; the kinetic energy equation, on the other hand, requires a
redistributionof energy within a system while maintaining the overall principle of
energyconservation.

In a typical example, we apply the potential energy equation to the case of a
planetin a regular gravitational orbit. So, the force equation

my _ GMm
r - 2

leadsto a potential energy relation

M
mf:—Grm.

On the other hand, the changing conditions involved in the escape of a body of mass
m from a gravitational field require a kinetic energy equation of the form

my  GMm
2 r -

Significantly, Newton, despite having no word or expression equivalent to the
modernterm ‘energy’ or to any particular form of it, used both these equations in his
Principia, in the more general forms applicable to any force." Book I, Proposition
XLI, a versionof what came to be known as the ‘viS vivd integral, is applied to
finding the paths taken by bodies subject to any type of centripetal force; this is a
classiccase of the potential energy equation. Proposition XXXIX, on the other hand,
which considersthe velocity of a rising or falling body produced by the action of an
arbitrary force, is a kinetic energy equation, showing that the work done, or the
integralof force over distance, in unresisted motion, is equal to the change in kinetic
energyproduced AW = A(MV/ 2)).

Numerically, we observe that the potential energy term is twice the value of the
kinetic. We recognise here, of course, that this is a special case of the virial theorem
relating the time-averagecdotential and kinetic energies, V and T, in a conservative
systemgoverned by force terms inversely proportional to power n of the distance, or
potentialenergy terms inversely proportional to power n— 1. That is:

v

The virial theorem, in effect, gives us a relationship between the energy term relevant



to constant conditions (potential energy) and that obtained under conditions of change
(kinetic energy). For two special cases — constant force and inverse-square-lawforce
— V will be numerically equal to 2T, for in these cases n is, respectively, equal to 0
and?2. Such forces, in fact, are overwhelmingly predominant in nature, as they are a
natural consequence of three-dimensionalspace. In many cases, then, the factor 2
becomesthe direct expression of the relationship between potential and kinetic
energies.

3 Kinetic theory of gases

The fact that two apparently contradictoryequations can both be said to illustrate
the general principle of the conservation of energy can be easily explained if we
considerthe kinetic energy relation to be concerned with the action side of Newton’s
third law, while the potential energy relation concerns both action and reaction.
Becausef the necessary relation between them, each of these approaches is a proper
and complete expression of the conservation of energy. However, circumstances
generallydictate which of the two is the most appropriateto use. A good illustration
of the connection is given by an old proof of Newton’s of the mv / r law for
centripetalforce, and hence of the formula mv? for orbital potential energy.” This had
the satellite object being ‘reflected’ off the circle of the orbit, first in a square
formation,and then in a polygon with an increasing number of sides, becoming, in the
limiting case, a circle. Here, the momentum-doubling action and reaction by the
imagined physical reflection produces the potential energy formula, as well as
demonstratingthe relation between the conservation laws of linear and angular
momentum.

Anothersignificant case is the derivation of Boyle’s law, or the proportionality of
pressure(P) and density (p) in an ideal gas, from what is often described as the
‘kinetic’ theory. Contrary to what is often stated in elementary textbooks, the kinetic
behaviourof gas molecules is in no direct way responsible for Boyle’s law. The
derivationinvolves a doubling of momentum as the ideal gas moleculesreflect off the
walls of the container, of the same kind as Newton assumed in his imaginary
reflections under centripetal acceleration. The factor 2 thus introduced is then
immediatelyremoved by the fact that we have to calculate the average time between
collisions(t = 2a/ v) as the time taken to travel twice the length of the container (a).
The average force then becomes the momentum change / time =2 mv/t = mv / a,
andthe pressure due to one molecule in a cubical container of side a becomes mv /
a’, or m\?/V (volume), leading for n molecules to the pressure-densityrelationship.

The incorporation of momentum-doubling means that both action and reaction
are included in the system under consideration, thereby creating a steady-State
dynamicswith positions of molecules constant on a time-averageTaking into account
the three dimensions between which the velocity is distributed, the ratio of pressure



anddensity (P / p) is derived from the potential energyterm mV for each molecule
andis equal to one third of the average of the squared velocity, or c?/3.

Strictly speaking, this result has nothing whatsoever to do with any dynamical
modelof gas molecule behaviour. Newton derived exactly the same result, assuming,
for purely mathematical purpos@sthat gas molecules could be considered as
stationary objects exerting a repulsive outward force on each other in inverse
proportional proportion to their distance apart, and a gas in steady state exerts a
pressuren all directions which is exactly the same as the molecules being considered
stationaryon a time average and exerting a force inversely proportional to their mean
distanceapart, or, for a fixed mass of gas, to the length of the container. (It is not, of
course,necessaryto assume that this is due to a physical interaction between the
molecules.)

We only bring in kinetic behaviour when we relate the average kinetic energy of
the molecules to the temperature of the gas; but there is no ‘derivation’ involved
becauseemperatures not defined independently of the kinetic energy, and we make
this definition by an explicit use of the virial theorem, to find the unknownaverage
kinetic energy from the knownpotential energy. We find that the potential energy of
each individual molecule is KT for each degree of freedom, and, in total, 3KT.
However, by applying the virial theorem to the results of the potential energy
calculations,we can relate the dynamical behaviour of an ideal gas to the kinetic
energyexpression (3kT / 2) for its individual molecules. In effect, the derivation of
Boyle’s law assuming dynamical gas molecules was merely an operational
conveniencefor pressure terms of any kind, whatever their origin, are an expression
of the action of force or potential energy. That is, it is a purely formal matter whether
we describe the gas in terms of the average kinetic energy of the individual molecules
or an equivalent averaged-out potential energy of the gas as a whole. A gas in steady
stateis equivalent to a system with constant expansive force in all directions, and a
systemof this kind necessarily requires a virial relation of the form

V=2T.

betweerthe time-averagegotential and kinetic energies.

It is interesting, incidentally, that Newton’s earliest derivation of the centripetal
force law (mV / r) (prior to the geometrical proof discussed above)® involved
essentiallythe same collision process (involving aether particles) as is now used in the
kinetic theory of gases, with force calculated as the product of the change in
momentumin a particle due to impact and the rate at which collisions take place, the
collision rate being found by dividing the particle velocity by the distance travelled
betweerrollisions.



4 Radiation pressure

Consideratiorof material gases leads us on to the subject of photon ‘gases’, as first
consideredy Einstein in deriving radiation pressure, following the earlier, classical,
calculationby Boltzmann. Remarkably, the expressiongor photon gases are identical
in form to those for material gases, even though the photon gas is a relativistic system,
unlike the material gas. In exact parallel to the expression for a material gas, the
radiationpressure of a photon gas within a fixed enclosure is found to be one third of
theenergy density of radiation, that is:

1 .
P:3pC .

In this context, the photon behaves in exactly the same way as a material particle, and,
becausehe system is in steady state, the energy term mc behaves as potential not
kinetic, energy, exactly as its form would suggest. The photons are reflected off the
walls of the container in the same way as the material gas molecules, although this
time we can also consider the process as involving absorption and re-emission,There
is thus no mysterious ‘relativistic’ factor at work here — as suggested by some authors
who see m¢& for the photon as a ‘kinetic’ energy replacing the term mV# / 2 used for
material particles; mc is simply a reflection of the potential nature of the photon’s
total energy.

The whole point of Einstein’s introduction of the formula E = m¢ to represent
the photon’s total energy (and, by analogy, that of true material particles) was to
preservethe classicallaws of conservation of mass and conservation of energy. As
Einsteinhimself was well aware, the total energy equation E = mMc cannot be derived,
by deductive means, from the postulates of relativity; all that can be demonstrated is
the change of energyormula AE = Amc. It is merely an act of faith to extend this
formulato the more general expression. This is because the total energy term occurs
only as a constant of arbitrary value in the integration of the relativistic expression for

rateof energy change: dT

E=F.v.

In addition, the presence of mc in the relativistic kinetic energy equation, which
emergess the solution to this integral:

contradictsthe well-establishedprinciple that special relativistic equations lead to
classicalones when Vv « C. In principle, we could add any constant of integration to the



equation.Adding mdc, for example, would remove the anomalous term entirely and
makethe expression, for v « C, identical with the classical one, as would normally be
required.It has been found convenient, in relativity, however, to take the constant of
integrationas 0, because this allows a convenient definition of a 4-vectormomentum,
andthen to find a ‘physical’ meaning for the added term mc.

Writers who have investigated Einstein’s own arguments and who demonstrate
the validity of his derivation of the equation AE = Amdc point to the arbitrary, though
physically reasonable, nature of its extension to a body’s total mass. Stachel and
Toretti, for example, state that: ‘The final conclusion that the entire mass of a body is
in effect a measure of its energy, is of courseentirely unwarranted by Einstein’s
premisses“; and they quote Einstein as follows: ‘A mass mis equivalent — insofar as
its inertia is concerned — to an energy content of magnitude mc&. Since we can
arbitrarily fix the zero of (the total energy), we are not even able to distinguish,
without arbitrariness, between a ‘true’ and an ‘apparent’ mass of the system. It
appearsnuch more natural to regard all material mass as a store of energy.”

Of course, what is arbitrary in special relativity need not be arbitrary in other
contexts;if an idea is ‘physically reasonable’ or ‘natural’, it must be explicable in
termsof some definite physical principles; and if mass is to be considered as a ‘store’
of energy, then this principle must be related to the idea of mass as a specifically
potentialform of energy. No problem, therefore, arises if we recognise that mc has a
classical,as well as relativistic meaning. Its structure is clearly that of a classical
potentialenergy, which is precisely what we would expect total energy to be, and it
was introduced to preserve a classical conservation law. Like many other things in
relativity (the Schwarzschild radius, the equations for the expanding universe, the
gravitationalredshift, the spin of the electron), the expressiondoes not arise from the
theory of relativity itself but is a more fundamental truth which that theory has
uncovered.

5 The classical potential energy of the photon

The number 2 has frequently been described as a ‘relativistic’ factor separating
relativistic and nonrelativistic cases, but it is no such thing. It would be extraordinary
if relativistic conditions should somehow conspire exactly to halve or double
significantclassical quantities. Relativistic factors are typically of the form y = (1 —V?
/ C2)_1/2, suggesting some gradual change when v — C. It makes no physical sense to
supposethat the transition involves discrete integers. Certainly, AE = Amc is a
relativistic equation because it incorporates the y factor in the Am term, but E = mc is
not, even though it took relativity to discover its application to material particles. mc
IS a potential energy term in classical physics which has the same effect as the
equationE = mc in relativistic physics, and the effects which depend only on E = mc
andnot specifically on the 4-vectorcombination of space and time can be derived by



classicalapproaches entirely independent of any concept of relativity. In fact, in the
special case of light photons — or light ‘corpuscles’ in the older terminology —
potentialenergy terms of the form mc, or their equivalent, have been regularly used
sincethe seventeenth century in a variety of classical contexts, and are still so used in
specialisectalculations.

Newton,for example, in examining atmospheric refractionin 1694, conceived the
bendingof light as equivalent (in our terms) to a change in potential energy from mc
asa result of a constant refracting field analagous to the gravitational field g at the
Earth’s surface.®® The equation he used was effectively the same as our steady-state
potential energy (or ‘vis vivd) equation for a circular gravitational orbit, slightly
modified for the elliptical case. Ordinary refraction he treated as a process analagous
to gravitational orbital motion, subject to a force mc / r, and, by implication, a
potential energy M, analagous to the gravitational orbital force mV# / r and
gravitationalpotential energy mV. This analogy is possible because the constancy of
the velocity of light ensures that the optical systemis ‘steady-State’ and that its
potential energy term is numerically equivalent to that in the inverse-square-law
gravitationalsystem.

As a result of this second calculation, Newton was able to write in a draft of
Query22/30 for the Opticksthat: ‘...upona fair computation it will (be) found that the
gravity of our earth towards the Sun in proportion to the quantity of its matter is above
tenhundred million of millions of millions of millions of times less then the force by
wch a ray of light in enteringinto glass or crystal is drawn or impelled towards the
refractingbody. ...For the velocity of light is to the velocity of Earth in Orbis magnus
as 58 days of time (in which) the Earth describes the (same space —); that is an arch
equalto the radius of its orb to about 7 minutes, the time in wch light comes from (the
Sun)to us; that is as about 12,000 to 1. And the radius of the curvity of a ray of light
during it(s) refraction at the surface of glass on wch it falls very obliquely, is to the
curvity of the earth Orb, as the radius of that Orb to the radius of curvature of the ray
or as above 1,000,000,000,000,000,000 to 1. And the force wch bends the ray is to the
force wch keeps the earth or any Projectile in its orb or line of Projection in a ratio
compoundedaf the duplicate ratio of the velocities & the ratio of the curvities of the
linesof projection.”®*°

In another calculation in the same manuscript, Newton took the radius of the
Earth’s orbit as 69 million miles (based on a solar parallax of 12 seconds) and the
radiusof curvature of the path of a light particle as 107° inches. Assuming that the
light from the Sun takes 7.5 minutes to reach the Earth and that in this time the Earth
would have travelled 6197 miles, he found the ratio of the forcesto be about 5 x 102,
The centripetal force calculation used in Newton’s studies of refraction is an
illustration of the power of the virial theorem, and must give the correct numerical
energyrelation whether or not the description of the force is ‘correct’. The constraints
which need to be applied to find the true nature of the vector force are not required to



find the numerical value of the scalar energy.

A quite different use is found in Newton’s formula for the velocity of waves in a
medium,in terms of elasticity or pressure (E) and density (p), which he applied to
bothlight and sound.** Essentially, Newton’s formula

is an expression of the fact that the potential energy of the system of photons, or gas
moleculesin the case of sound (M), is equal to the work done at constant pressure as
aproduct of pressure and volume. The application to light, or at least to its medium of
propagationpccurs in the calculation in the published Query 21 of the ratio between
the elasticities per unit density of a proposedelectro-optic ‘aether’ and atmospheric
air, and the manuscript evidence shows that this was linked also with the calculation
of the force of refraction, occurring immediately after the final version of that
calculationin the manuscript.™

Newton’s elasticity of the aether is what we would call energy density of
radiation (pc?), which is related by Maxwell’s classical formula of 1873 to the
radiationpressure, and the ratio he calculates is, in effect, the ratio of the energy per
unit mass of a particle of light to the energy per unit mass of an air molecule, as
manifestedn the transmission of sound. Now, the molecular potential energy per unit
massfor air may be calculated from the kinetic theory of gases (PV = RT) at about 1.8
x 10°J kg_l when T = 300 K. Since the energy per unit mass for a light photon is 9 x
10'° J kg_l, the ratio is 5 X 1011, which is comparable with Newton’s 4.9 x 10
minimum in Query 21. Light, of course, will always give ‘correct’ results for such a
calculationwhen travelling through a vacuum, because in such circumstances, there is
no source of dissipation, and the virial relation takes on its ideal form. Newton’s
formula for calculating the velocities of waves in a medium is thus another perfect
illustrationof an application of the virial theorem, and it is because it is such a perfect
illustration that it works in a case where the model of interaction with matter no
longer applies. This is why the elasticity of light is precisely the same thing as its
energydensity. Althoughthis does not apply as exactly to sound, where (as Laplace
later showed) the ‘elasticity’ constant needs to be calculated from the adiabatic, rather
than the isothermal, value, the correction factor is relatively small in order of
magnitudeerms (20 %).

6 The gravitational bending of light

Interestingly,though light in free space has velocity C, and, therefore, no rest mass or
kinetic energy, as soon as you apply a gravitational fiektle light ‘slows down’, and,
at least behavesas though it can be treated as a particle with kinetic energy in the
field. This is precisely what happens when we use the standard Newtonian escape



velocity (or kinetic energy) equation

my  GMm
2 "

to derive the Schwarzschild limit for a black hole, by purely classical means, as was

donein the eighteenth century by Michell and Laplace.lz'13 Assuming V — C, we
derive 2GM
r=—2

andthere is no transition to a ‘relativistic’ value

A classic caseof applying a kinetic energy-type equation to light, is the classical
derivation of the double gravitational bending, an effect normally thought to be
derivableonly from the general relativistic field equations. The double bending of
light in a gravitational field has been a cause celébreince Eddington used it to
establishEinstein’s theory in the eclipse expedition of 1919.* We have since that
time been repeatedly assured that the double bending is a relativistic effect, and that
‘Newtonian’ calculations, using the principle of equivalence, yield only half the
correctvalue, although several authors have put forward demonstrations of the double
deflectionbased only on special relativity. '>*®

The ‘Newtonian’ calculation takes its origin from Soldner, who, we are told, in a
paperof 1801,
using the standard ‘vis vivd theorem or potential energy equation (modified for a
hyperbolicorbit), according to the expression:

GMm(e-1)
mc = . ,

investigated the gravitational deflection of light by a massive body,

with e taken as the eccentricity of the hyperbolic orbit. Since 1 « €, the half-angle
deflectionbecomes

1 GM
e~ ¢

andthe full angle deflection (that is, in and outof the gravitational field)

g_ZGM
e~ & -

Generakelativity, however, finds

= 2 s

2 AGM
e cr

and it was the supposed experimental realisation of this result which allowed
Eddingtonto claim that he had ‘overthrown’ Newtonian physics.
However,Soldner did not use the potential energy equation. He used the kinetic
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energyequation, m(,z_ GMm(e—1)

2 r ’

on the basis of Laplace’s prior employment of it in calculating the black hole radius,
and he would have obtained the ‘correct’ total deflection if he had used the double
angle in calculating his integral! This was, indeed, correct procedure, for the
deflectionof a photon coming past the Sun’s edge from infinity is a case of an orbit in
the process of formation, and not an orbit in steady state. It is the reverse of the
processof creating an orbit by escaping from the confining field, modified, of course,
by the hyperbolic, rather than circular or elliptical, orbit produced by the immense
relative speed of the light photon. The significant consideration is that, on its
immenselylong journey prior to its coming close to the gravitational field of the Sun,
the photon’s velocity was not determined by the Sun’s gravitational field, and the
direction of its deflection is perpendicular to this. The classical equation used by
Eddingtonwas the one specified for steady-stateconditions, whereas light-bendingis
surelyan example of energy exchange.

We should not be surprised that a purely classical calculation of the light-bending
IS possible in this way. In principle, relativity theory does not produce different
energyequations to classical physics; it merely corrects our naive understanding of
what are steady-Stateand what are changing conditions. The photon, in particular,
providesan instance in which we would expectrelativistic equations to coincide with
classicabnes. Photon energy, after all, is field energy and has no material component;
the photon mass is, therefore, defined in terms of a pre-existing classical energy
equationand does not provide a source of independent information which can be used
to distinguish between classical and relativistic conditions.

Theuse of a ‘kinetic energy’ expression mc/ 2 in the case of light bending does
not, of course, imply that photon ‘total energy’ is of this form, or that there is any
suchthing as the ‘kinetic energy’ of a photon; mc / 2 (as in the parallel case of the
derivationof the Schwarzschild radius) is merely an expression of the action of the
perturbingfield. We never see this energy directly, for, whenever a photon interacts
with matter (or is ‘detected’), its ‘independent’ existence has ceased and the energy
absorbedis purely the potential or total energy value mc. It is this aspect of the
photon’sexistence that has led to the idea that the absence of the factor 2 is somehow
amysterious property of relativity not paralleled in classical physics.

The idea that a ‘relativistic’ correction (either special or general) ‘causes’ the
doublingof gravitational effect is an illustration, not of the fact that the calculation
has to be done in a relativistic way, but that relativity provides one way of
incorporatingthe effect of changing conditions if we begin with the potential, rather
than the kinetic, energy equation. Here, the potential energy equation typically
produceshe effect of gravitational redshift, or time dilation, while relativity adds the
correspondindength contraction. So some authors have argued for the redshift being
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‘Newtonian’ while the length-contractionor ‘space-warping’ is relativistic, while
othersclaim that the reverse is true. It has also been claimed variously that the
‘Newtonian’ effect has to be added to that produced by the Einstein calculation of
1911 ,based on the equivalence principle (which also obtained only half of the correct
value),or that the two effects are the same, and have to be supplemented by a ‘true’
relativistic effect, like the Thomas precession.ls’zz'25
energyconsiderations which decide the issue. If the potential energy equation is used
wherethe kinetic energy equation is appropriate, then (correct) physical reasons can
be found for almost anyadditional term which doubles the effect predicted.

The true nature of the contributions made by different causes to the three
relativistic predictions of redshift, light bending and perihelion precession has been
obscuredby the all-embracingnature of the general relativistic formalism, and it is
too easily assumed that the effects can be derived only from the full field equations of
generalrelativity. Comparison with classical predictions demonstrate that redshift and

It is, of course, purely (classical)

the time dilation components of light bending and perihelion precession depend only
on the relation E = m& and not on the 4-vector combination of space and time. The
spatialcomponents of the light bending and perihelion precession should then follow
automaticallyfrom the application of 4-vector space-time without any need to apply
the equivalence principle, any time dilation necessarily requiring an equivalent length
contraction.However, since m¢ in a field has a ‘kinetic energy’ equivalent, even
specialrelativity is only an alternative approach to a calculation that must also be
valid classically.**%%%’

In a historical context, although we have no direct calculation of the ‘Newtonian’
deflectionof light from Newton himself, there is a related calculation of atmospheric
refractionusing the potential energy equation, similar to the one already mentioned.®®
Newtonassumes a constant refracting field f at a height h above the Earth’s surface,
entirely analagous to the gravitational field g (= GM / r?). He then uses Proposition
XLI, to calculate the resulting deflection into parabolic orbits of light rays entering the
Earth’satmosphere. The assumption of parabolic orbits requires mc to be equated to
the potential energy term mfr (1 + cos @), equivalent to the gravitational GMm (1 +
cosg) / r, while the use of Proposition XLI is equivalent to a modification of c? by the
factor (1 —2fh / ¢® in the same way as the principle of equivalence is used to modify
¢® by (1 —2gr / ¢® or y2 in gravitational bending. Significantly, atmospheric
refraction is still calculated in modern astronomical textbooks using the old
corpusculatheory!

7 The gyromagnetic ratio of the electron
Relativity has also been assumed to be needed to explain the anomalous magnetic

momentor, equivalently, the gyromagnetic ratio of a Bohr electron acquiring energy a
magneticfield. According to ‘classical’ reasoning, it has been supposed, an electron
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changingits angular frequency from wo to @ acquires energy in a magnetic field B of
theform
m (a)2 — woz) = ewolB ,

leading,after factorization of (w” — w¢?), to an angular frequency change

eB
Ao =50

However ,a relativistic effect (the Thomas precession, again) ensures that the classical
€wol B is replaced by 2eworB, leading to

eB

Aa):mr.

But relativistic and classical treatments coincide when, as with the light bending
example,the kinetic energy equation is recognised as the one applied to changing
conditions at the instant we ‘switch on’ the fiel@hen, we automatically write

1
> m(co2 - a)oz) =ewoB ,
whichis no more, in principle, than the equation of motion for uniform acceleration
vV —uf=2as .

So, the Thomas precession is needed if we begin with the potential energy equation
applicableto a steady state, but not if we apply the kinetic energy used for changing
conditions.

8 The Dirac equation

The gyromagnetic ratio leads on naturally to the subject of electron spin. For this, we
needto introduce the Dirac equation. Here it will be convenient to rewrite the Dirac
equation,
(/0. +im)y=0
or
(yp+m=-pE)y =0,

in a more algebraic form with the y'matrices replaced by a combination of quaternion

andmultivariate 4-VeCtoralgebras.28'36 Here, we write

vo=iK;yr=ii; po=ji;ps=Kki;ps=1ij.
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The quaternion units, i, j, K, follow the usual multiplication rules for quaternions;

themultivariate vector units, I, |, K, follow the multiplication rules for Pauli matrices:
vector units guaternion units
i=1 i“=—1
ij =i =ik ij=—ji=k
j2 =1 j2 -1
jk =—kj =i jk==kj=i
k?=1 kK?=-1
ki=—Kki =1ij ki=—ik=].

The reformulation is necessary to the understanding of how the Dirac equation
relatesto classical energy conservation rules, for, using it, we can easily derive the
Dirac equation, via the Correspondence Principle. We take the classical relativistic
energy-momenturoonservation equation:

E2—p?—m2c*=0 |
andfactorize using our quaternion-multivariate-4-vectopperators to give:
(xKExiip+ijmy) (xkKExiip+ijmy)=0.

Adding an exponential term and replacing the left-hand bracket by quantum
differentialoperators, we obtain

(iik%iiﬂ+ ijmoj w=0,
where |
w=FKEXIip+i] my) SiEt-p)

Thefour solutions possible with + E, £ p, may be represented by a column vector
with the four terms:
(KE+ii p+1ij my)
(KE—=ii p +ij mp)
(-KE +ii p +1j myp)
(-KE =ii p +ij my),

representinga single quantum state. We can proceed to show that a spin 1 boson
wavefunction(incorporating fermion-antifermioncombination) is the sum of
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(KE+ii p+ij mo) (-KE +ii p +ij m)
(KE=ii p+ij m) (-KE =i p +ij mp)
(KE+ii p +1j mp) (KE+ii p + 1] myp)
(-KE =i p +ij mp) (KE =i p + ij my)

while a spin 0 boson is the sum of

(KE +ii p+ij mo) (-KE =i p + ij my)
(KE=ii p+ij mp) (-KE +1i p + 1] my)
(-KE +ii p +ij mp) (KE—1i p + 1] my)
(-KE =ii p +ij mg) (KE +1i p +ij mp),

eachmultiplied by the usual exponential form in creating the wavefunction. The
fermion wavefunction is effectively a nilpotent (a square root of 0), and the boson
wavefunctiona product of two nilpotents (each not nilpotent to the other). The
multiplicationshere are scalar multiplications of a 4-componenbra vector (composed
of the left-handbrackets), representing the particle states, and a ket vector (composed
of the right-handbrackets), representing the antiparticle states.

9 Electron spin from the Dirac equation

The conventional treatment of spin introduces the factor 2 through the property of
noncommutatiorf vector operators. From the standard version of the Dirac equation,
we obtain

[0, H] = [0, iyoy.p + yom .
where#{is the Hamiltonian, or total energy operator, and

O = iyoysys, with 1 = 1,2, 3
and

iVOY-p = iyoy1P1 + iyoy2P2 + 1y0y3pPs -

Translatinghis into our new Dirac formalism, we obtain:

O1=—i; Op=-;03=—k
or
0=-1,
and
y=il,

wherel is the unit (spin) vector.
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Sinceyom = ikm has no vector term and & no quaternion, they commute, and we
mayderive the conventional

[6’, yom] =0
and
[0, ] = [0, iyoy.p] -
Now,
iyoy.p =~ (ipL+jp2 + Kpg) .
So,

[/0\', _'7‘[_| :2j (Ij P2 + Ikp3+]| p1+ jkp3+ kip1+ kj pz)
= 2i] (k(p2—p1) +j(p1—p3) + i(p3 —p2))
=2ij1xp.

In more conventional terms,

[6, H] = 2iki (K(p2—p1) + j(P1— Pa) + i(P3 — P2))
=2ikyxp
=2pyX*p.

The factor 2 appears as a result of noncommutation. Specifically, it is the
anticommutingproperty of the multivariate vectors in the y matrices which produces
the doubling effect. This is the result we wished to achieve. The rest of the derivation
is purely formal, and can be done either conventionally or in the new formalism. If L
iS the orbital angular momentum r X p,

[L, #H] =[r xp, iyoy.p + yom|
=[r xp, iyoy.p] .

Takingout common factors,

[L, H] =iy [r,y.p] xp
=—Ki[r,1.p] Xp
=—j[r,1.p] xp.

Now,
oy agxmj ( dy amggj . (Qy_/ agzm)
[r,l.p]://_—u(xax— ax ) yay— dy —ik |z
=ily.
Hence,
L, 7] =—ij1xp.
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This, again, can be converted into conventional terms:
[L,#H] =iki1xp
=ipyxp.
Usingthese equations, we derive

[L-1/2,4]=0
or
IL+G/2, 4 =0.

Hence L —1/2)or (L + o/ 2) is a constant of the motion. The important aspect of
this derivation is that the factor 2 is introduced as a result of anticommutation in the
productsof multivariate momentum operators.

10 The Schrédinger equation

Now, it might be assumed that the spin term (G / 2) is introduced with the relativistic
aspectof the Dirac equation. However, using the multivariatevectors, we can obtain
effectivelythe same result using the non-relativistic Schrédinger equation,

2

E-V)y =3y,

by deriving the anomalous magnetic moment of the electron in the presence of a
magneticfield B.*’ Spin, in fact, is purely a property of the multivariate nature of the
p term, and has nothing to do with whether the equation used is relativistic or not. It is
significanthere that the standard derivation of the Schrédinger equation begins with
theclassical expression for kinetic energy, p°/ 2m= mv/ 2.

2

_ e P
followed by substitution of the quantum operators E =i d/ dt and p=—i [, acting on

the wavefunction y, for the corresponding classical terms, to give:

1
E-V)y =-5- Py

14’

or 1
i —Vw:—%ﬁzw,

in the time-varyingcase.
Now, it is possible to show that the Schrodinger equation is effectively a limiting
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approximationto the bispinor form of the Dirac equation in the relativistic limit. In
principle, this should mean that the spin %2 term that arises from the Dirac equation
hasnothing to do with the fact that the equation is relativistic, but is a result of the
fundamentallymultivariate nature of its use of the momentum operator, equivalent to
the use of Pauli matrices. In principle, we should be able to show that no new
informationconcerning the factor 2 is introduced with special relativity. We take the
Dirac equation in the form

(iy.p+m=70E) y =0

andchoose, without loss of generality, the momentum direction ipx = p. Here again,
also, E and p represent the quantum differential operators, rather than their
eigenvaluesThis time, we make the conventional choices of matrices for f:

1 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 -1
dfor y*:
andfory 0 0 ¥
0 — 0
0 I 0
[ 0 0
leadingto the representation:
E-m 0 0 -p )
0 E-m -p 0 W2
0 p -E-m 0 w3 [=0.
p 0 0 -E-m w.

This can be reduced to the coupled equations:

(E-mg =py,
and
(E+m)y =pp,
wherethe bispinors are given by w1
¢ ) ( ] ’

w2
and
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w3
x= :
Ya
Then,assuming the non-relativisticapproximation E = m, for low p, we obtain

X :é?_n(o

and I

E-mo =510.
Using the same approximation, ¢, here, also becomes . Conventionally, of course,
the Schrodingerequation excludes the mass energy m from the total energy term E,
and,in the presence of a potential energy V, we obtain:

2

(E—V)l//:%l//-

11 Electron spin from the Schrddinger equation

Here, it will be seen that the factor 2 in the classical potential energy expression
ultimately carries over into the same factor in the spin term for the electron. In our
operatomotation, the Schrodinger equation, whether field-free or in the presence of a
field with vector potential A, can be written in the form,

2mEy = py
Usinga multivariate, p = - + €A, we derive:

2MEy = (0 +eA) (-0 + eA) y

(<0 + eA) (0w + eAy)

TPy —ie (O.¢A +i0y x A +A.Oy +iA x Oy) + €A%

TPy —ie (O.pA + 2A.0y + iyd x A) + €A%y

TPy —ie (wO.A + 2A.0y) + €A%y + eBy

(HO+eA).(HO+eA) y + eBy

=(HO+eA).(HO+eA) y+2mu.B
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This is the conventional form of the Schrodinger equation in a magnetic field for
Spinup, and it is the 2mu.B term which is responsible for the electron’s anomalous
magneticmoment. The wavefunction can be either scalar or nilpotent. Reversing the
(relative)sign of €A for spin down, we obtain

2mEy = (0 -eA) (HO—-eA) y
=(HO-eA) (HdO0-eA) y—2mu.B.

We can see from this derivation that the factor 2 is both introduced with the transition
in the Schrodinger equation from the classical kinetic energy term, and, at the same
time, produced by the anticommuting nature of the momentum operator.

12 The Heisenberg uncertainty principle

It is precisely because the Schrodinger equationis derived via a kinetic energy term
that this factor enters into the expression for the spin, and this process is essentially
the same as the process which, through the anticommuting quantities of the Dirac
equation,makes (L + G / 2) a constant of the motion. Anticommuting operators also
introducethe factor 2 in the Heisenberg uncertainty relation for the same reason, and
the Heisenberg term relates directly to the zero-point energy derived from the kinetic
energy of the harmonic oscillator. The formal derivation of the Heisenberg
uncertaintyrelation assumes a state represented by a state vector (/ which is an
eigenvectorof the operator P. In this case, the expectation value of the variable p?
becomes
<p*>=y*Py

andthe mean squared variance
(Ap)* = y*{ P —<p>I}*y = y*P%y
if P'=P —<p>l andl is a unit matrix. Similarly, for operator Q,
(A0)? = y{ Q— <>}y =y *Q%y .
SinceP'y and Q'y are vectors,

(Ap)* (AG) = (W* P ?y) (wQ%) = (W*P'Qy) (v*QP'y)
> ((1/2) (y*PQy —y*QPy)F
> (1/4) Oy*(P'Q —-QP)y?
> (1/4) [P,Q] 2
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Hence

(Ap) (Ag) = (1/2) [P,Q]
>h /2

if P and Q do not commute. The significant aspect of this proof is that the factor 2 in
theexpression h/ 2 comes from the noncommutation of the p operator.

13 The harmonic oscillator

The factor 2 in the quantum harmonic oscillator is clearly derived from the fact that
thevaryingpotential energy term added to the Hamiltonian, mw?¢ / 2, is taken from a
classicalterm of the mV? / 2 type. So, the Schrodinger equation for the eigenfunction
Un(X) and eigenvalue E,, with the R? explicitly included and the spatial dimensions
reducedo the linear X, becomes:

( jis azun(x) mew?
2m ax2 tT 2

Un(X) = Enun(X) .
This equation, as solved in standard texts on quantum mechanics, produces a ground

stateenergy hw / 2, with the factor 2 originating in the 2m in the original equation.
We define the new variables

Yo
y:(?j X and en=En/how ,

andthe equatiomow becomes:

G-l o
= % - yj (aay ) Wh(Y) — Un(Y) = —2¢n Un(y) . 2)
Fromthis we derive
O R T
(% R yj(% - yj (a‘"y juq(y) — 26+ 1) ( + yj Wy . @

From (3), we may derive either (0/dy — Yy) un(y) = 0, which produces a divergent
solution,or (0/0y —y) uUn(Y) = Un+1(Y) (say), which means that

(aiy _ yj( ;y + yj thea(y) = (=2(en+ 1) = 1) Unea(y)
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whichis (2) for Uns1 if
ent1l=¢gns1.

From (4), we may obtain either (0/dy + Y) un(y) = 0, which gives us the ground state
eigenfunction,ug(y) = exp (=y? / 2); or (8/dy — y) un(y) = Un-a(y) (say). In the latter
case(4) becomes

(aiy + yj(aiy - yj 1Y) = (—2(en— 1) = 1) Un-1(y)

en-1=én— 1,

which gives us a discrete series of energies E, at Nhw above the ground state. From
the ground state eigenfunction and (1), we obtain

280—1:0,

which gives us the ground state or ‘zero-point’ energy

hw
E0:7 .

Here,we can derive the factor 2 in Eg directly from the introduction into Schrédinger
equationof the classical term Maw?X / 2, which is equivalent to mv /2.

14 The Klein-Gordon equation

From both Dirac and Schrédinger equations, we see that fermions have half-integral
spins.How, then, do we explain the integral spins of bosons, such as the photon? The
answerhere is that, while the fermion equation is the kinetic energy equation of
Schrédingeir Dirac, based on mv? / 2 or p*/ 2m, the boson equation is the potential
energyequation, based on E = mc, where mis now the ‘relativistic’, rather than the
restmass. Once again, the origin of the factor 2 is seen in the virial relation between
kinetic and potential energies. The Klein-Gordonequation, which applies in quantum
mechanicgo the photon, derives its integral spin values from the fact that its energy
term contains unit values of the mass m. To derive this equation, we quantize the
classicakelativistic energy-momentunmequation,

E?—p’c®—mc*=0 ,

directly, to obtain

02
ot Dy =m.
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in units where h = ¢ = 1. In the nilpotent algebra, the Klein-Gordon equation
automaticallyapplies to fermions, as well as to bosons, because it simply involves
pre-multiplicationof zero by a nilpotent differential operator. Essentially, we take the
Dirac equation 3
(ikaiiﬂi ijrfb) y=0,
where
w=(KE+ii p *ij mp) ' -P" |

andpre-multiply by (i kg i+ Ijmoj to give
(ik£+iD+ijrrb)(ikg+iD+ijrrbj =0
at'= T ot~ = ==

or az
(y—mz—moj w=0.
15 Relativistic mass and rest mass

In principle, the kinetic energy relation is used when we consider a particle as an
objectin itself, described by a rest mass mp, undergoing a continuous change. The
potentialenergy relation is used when we consider a particle within its ‘environment’,
with ‘relativistic mass’, in an equilibrium state requiring a discrete transition for any
change.The existence of these two conservation of energy approaches has very
profoundimplications, and arises from a very deep stratum in physics. Kinetic energy
maybe associated with rest mass, because it cannot be defined without it — one could
considerlight ‘slowing down’ in a gravitational field as effectively equivalent to
adopting a rest mass, and, of course, photons do acquire ‘effective masses’ in
condensednatter. Potential energy is associated with ‘relativistic’ mass because the
latter is definedthrough a potential energy-type term (E = mc), light in free space
beingthe extreme case, with no kinetic energy / rest mass, and 100 per cent potential
energy/ relativistic mass. The description, in addition, seems to fit in with the halving
that goes on, for a material particle, when we expand its relativistic mass-energyterm
(mc) to find its kinetic energy (mV* / 2). One way of looking at it is to take the
relativisticenergy conservation equation

E2—p?® —mc* =0 .
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We can take regard this as a ‘relativistic’ mass (potential energy) equation of the
form E = m¢& (treating at one go the particle interacting with its environment), and
proceedo quantize to a Klein-Gordonequation, with integral spin. Alternatively, we
canseparate out the kinetic energy term using the rest mass my. From

E2 = me2ct (1 _E\’sz =

we take the square root, and obtain
\2
E= mocz+%+ .

The Schrédinger equation, of course, arises from this approach, quantizing mv*/
2 in the form p2/ 2m. Now, as we have shown, using a multivariate form of the
momentumoperator, p = -0 + €A, the Schrodinger equation produces the magnetic
momentof the electron, with the required half-integralvalue of spin, the %2 coming
from the term mV#/2 or p?/2m; and it is also effectively a limiting approximation to the
bispinorform of the Dirac equation. In principle, as we have seen, this means that the
Spin¥z term that arises from the DiraC equation has nothing to do with the fact that the
equationis relativistic, but arises from the fundamentally multivariate nature of its
useof the momentum operator. We can now see that it comes from the very act of
squarerooting the energy equation in the same way as that operation produces mv/ 2
in the relativistic expansion. The %2 is, in essence, a statement of the act of square-
rooting, which is exactly what happens when we split 0 into two nilpotents; the %2 in
the Schrodinger approximation is a manifestationof this which we can trace through
the'2 in the relativistic binomial approximation.

Significantly, the origin of the factor 2 is seen here in the process which square
rootsthe expression E” — nf. The origin of the same factor in the derivation of spin
from the Dirac equation, is seen in the behaviour of the anticommuting terms which
resultfrom this process. In fact, the two factors have precisely the same origin.

Anotheraspect of the process is that dimensionality in general, introduces twoO
ordersof meaning in a parameter — of the value (as in length / time or charge / mass),
andof the squared value (as in Pythagorean / vector addition of space dimensions, or
spaceand time, or energy and momentum, or charges / masses ‘interacting’ to
produceforces). In a sense we are doing this with fermion and boson wavefunctions,
onetype being a ‘square root’ of the other.

16 Zero point energy
The importance of the factor 2 in all our examples lies in the fact that it relates

togethertwo parallel but almost independent streams of physics: the continuous and
the discontinuous. Expressions involving half units of h do not suggest that there is
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sucha thing as half a photon, but represent, rather, an average or integrated increase
from 0 to h.The half-valuesare characteristic of the continuous option in physics, the
integral ones of the discontinuous option. Schrodinger, for example, represents the
former, with gradualistic energy exchange and a kinetic energy equation, Heisenberg
the latter, with abrupt transitions between states in integer values of ha determined
by bosonic (potential energy) equations. Both approaches are equally valid, although
they represent divergent physical models, and it is not surprising that a completely
continuoustheory of stochastic electrodynamics, based on the existence of zero-point
energyof value hw / 2, at each point in space, has developed as a rival to the purely
discretetheory of the quantum with energy hw.

Stochastic electrodynamics has been successful in providing classical
explanationsf the Planck black body radiation law from equipartition, and of Bose-
Einstein statistics for photons.gs'42 In addition, spontaneous emission, Bohr
transitions, zitterbewegung Van der Waals forces, and the third law of
thermodynamics, have been shown as classical phenomena arising from
electromagneticadiation, with the stochastic energy spectrum of hw / 2 per normal
modeof vibration,****and the same principle has been used to derive the Schrodinger
equationfrom Newtonian mechanics.***° Stochastic electrodynamics appears to form
a successful continuous option to discrete quantum mechanics based on the use of a
half value of the energy quantum.

In fact, not only are both discrete and continuous options possible — both are
required within a system. Discrete systems have to incorporate continuity, and
continuousones discreteness. Schrodinger thus has a continuous system based on h/
2, but incorporates discreteness (based on h)in the process of measurement — the so-
called collapse of the wavefunction. Heisenberg, on the other hand, has a discrete
system, based on h, but incorporates continuity (and h / 2) in the process of
measurement -via the uncertainty principle and zero-point energy. Continuity and
discontinuitymust both be present in a successful system, so whichever is not present
in the mathematical structure must be introduced in the process of measurement. In
addition,it would seem, nature always manages to provide a route by which hew / 2 in
one context becomes hw in another. This occurs, for example, in the case of black-
bodyradiation, where the spontaneous emission of energy of value hw is produced by
the combined effect of the hew / 2 units of energy provided by both oscillators and
zero-pointfield.*®

Justas the relativistic expression for kinetic energy presents a problem in the
asymptoticapproach to classical conditions, so does Planck’s quantum law of black
body radiation. As Einstein and Stern noticed in 1913, the Planck equation for the
energyof each oscillator hy

“exptw/kT) -1

doesnot reduce to the classical limit KT when KT » hy, but to KT — hv/ 2. Planck

U
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himself, in his so-called ‘second theory of radiation’, based on discrete emission but
classicabr continuous absorption, had obtained the modified law

hy
U=exptw/kn-1+™/2,

which suggested, as he said, that, even at the absolute zero of temperature, each
oscillatorhad an energy equivalent to hv / 2 at each frequency v.

In quantum mechanics, as we have seen, the zero-point energy term, hv / 2 or hw
/ 2, is derived from the harmonic oscillator solution of the Schrodinger equation. In
the Heisenberg formulation it appears as a result of the h / 2 term involved in the
uncertaintyprinciple. The derivation via Schrodinger shows the kinetic origins of the
factor 2. The derivation from the uncertainty principle suggests the origin of this
fundamentalconstant in continuum physics, as opposed to the constant h used in
discretetheories. It certainly does not suggest that there is any such thing as a half-
photon!

17 Radiation reaction

Thehw / 2 - he transition for black body radiation can also be seen in terms of
radiation reaction. Perhaps, surprisingly, this has an intimate connection with the
distinctionbetween the relativistic and rest masses of an object. The act of defining a
rest mass also defines an isolated object, and one cannot define kinetic energy in
termsof anything but this rest mass. If, however, we take a relativistic mass, we are
alreadyincorporating the effects of the environment. The most obvious instance is
that of the photon. The photon has no rest mass, only a relativistic mass; me for a
photonbehaves exactly like a classical potential energy term, as well as having the
exactform of a potential energy for a body of mass m and speed C. A particular
instancewe have used is the application of a material gas analogy to a photon gas in
producing radiation pressure pC2/ 3. Action and reaction occurs in this instance
becausehe doubling of the value of the energy term comes from the doubling of the
momentumproduced by the rebound of the molecules / photons from the walls of the
container -a classic two-stepprocess, like the two-way speed of light.

The energy involved in both material and photon gas pressure derivations is
clearlya potential energy term (the material gas energy having to be halved to relate
the kinetic energy of the molecules to temperature), and its double nature is derived
from the two-way process which it involves, which is the same thing as saying that it
is Newton’s action and reaction. The same thing happens with radiation reaction,
which produces a ‘mysterious’ doubling of energy hv / 2 to hv in many cases (and
alsozitterbewegundor the electron, which is interpreted as a switching between two
states).In another context, Feynman and Wheeler also produce a doubling of the
contributionof the retarded wave in electromagnetic theory, at the expense of the
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advancedwave, by assuming that the vacuum behaves as a perfect absorber and
reradiatorof radiation. In principle, this seems t0 be equivalent to assuming a filled
vacuumfor advanced waves (equivalent to Dirac’s filled vacuum for antimatter), and
relatesto previously stated ideas that continuity of mass-energyin the vacuum is

47-50

relatedto the unidirectionality of time. There are also connections with some

paradoxesn special relativity.
18 Paradoxes in special relativity

As we have seen, we frequently find the factor 2 where we need to introduce such
ideasas radiation reaction in the theory of zero point energy. Incorporating radiation
reactionmeans that we are also incorporating the effect of Newton’s third law, the
processwhich produces the required doubling in the case of material and photon
gasesand other steady-stateprocesses. However, many of the same results, as in the
anomalousmnagnetic moment of the electron, are also explained by special relativity.
It has been argued by C. K. Whitney that the correct result for the electron is obtained
by treating the transmission of light as a two-Stepprocess involving absorption and
emissiort” This is interesting because it is equivalent to incorporating both action and
reaction,or the potential energy equation, and the same result follows classically by
defining the potential energy at the moment the field is switched on. However, if we
usekinetic energy, or a one-Stepprocess, we also need relativity, because, once we
introducerest mass, we can no longer use classical equations. (‘Relativistic mass’ is,
of course, specifically designedo preserve classical energy conservation!)The two-
stepprocess is analagous to the use of radiation reaction, so it follows, in principle,
thata radiation reaction is equivalent to adding a relativistic ‘correction’ (such as the
Thomasprecession).

Whitney’s argument that the two-Stepprocesss removes those special relativistic
paradoxeswhich involve apparent reciprocity, is also interesting, because special
relativity, by including only one side of the calculation, effectively removes
reciprocity,and so leads to such things as asymmetric ageing in the twin paradox. The
argumentput forward by some authors,? that the problems arise in Einstein’s denial
of the aether may also be relevant if we translate it to the vacuum, because no vacuum
meansno ‘environment’, and, therefore, no ‘reaction’.Similar arguments again apply
to the idea that the problem lies in attempting to define a one-way speed of light that
cannotbe measured, because a two-way speed measurement of the speed of light also
requiresa two-stepprocess.

Whitney further showsthat the classic light-bendingand perihelion precession
‘tests’ of General Relativity can be derived using a two-stepprocess. This, again, is of
interest,because, as shown here, it is certainly possible to derive the light bending by
classicalargumentsusing kinetic energy (which is the same thing as using special
relativity, because light has no rest mass), and it is also possible to derive perihelion

27



precessiomsing special relativity, as a number of authors have demonstrated.* %18

19 The Jahn-Teller effect

From the earlier sections, it would appear that all the important factors of 2 in
classicalphysics, relativity and quantum physics, result from a choice between using
kinetic or potential energies, and that this is equivalent to using either the action side,
or the combined action and reaction sides, of Newton’s third law of motion. This, in
turn, derives from a choice between using continuous or discrete solutions, or
changingor fixed ones. A series of further arguments show that the origin of the
factor lies in the symmetry between the action of an object and the reaction of its
environment —which may be either material or vacuum.*® A fermionic object on its
own shows changing behaviour, requiring an integration which generates a factor 12
in the kinetic energy term, and a sign change when it rotates through 277 but a
conservative ‘system’ of object plus environment shows unchanging behaviour,
requiringa potential energy term, which is twice the kinetic energy.

This kind of argument makes sense of the boson / fermion distinction and the
spin1 /Y2 division between the particle types in a fundamental way, as well as leading
to supersymmetry, vacuum polarization, pair production, renormalization, and so on,
becausahe halving of energy in ‘isolating’ the fermion from its vacuum or material
‘environment’ is the same process as mathematically square-rooting the quantum
operator via the Dirac equation. Bell et al have shown that integral spins are
automaticallyproduced from half-integral spin electrons using the Berry phase, and,
by generalizing this kind of result to all possible environments, we may extend the
principle in the direction of supersymmetry.>® In principle, we propose that energy
principlesdetermine that all fermions,in whatever circumstances, may be regarded
either as isolated spin Y2 objects or as spin 1 objects in conjunction with some
particularmaterial or vacuum environment, or, indeed, the ‘rest of the universe’.

While hypothetically isolated fermions may follow the Dirac equation, derived
from the kinetic energy relation, and similarly isolated bosons follow the Klein-
Gordonequation, derived from the potential energy relation, the same particles in real
situationsbehave very differently. Fermionswith spin %2 become spin 1 particles
whentaken in conjunction with their environment, whatever that may be. The Jahn-
Teller effect and Aharanov-Bohm effect are examples. Treated semi-classically,the
Jahn-Tellereffect, for electrons in condensed matter, couples the factors associated
with the motions of the relevant electronic and nuclear coordinates so that different
partsof the total wavefunction change sign in a coordinated manner to preserve the
single-valuednessf the total wavefunction. This is possible because the time-scaleof
thenuclear motions is much greater than that for the electronic transitions. Neither the
nuclearnor the electronic wavefunction are single-valuedby themselves, but the total
wavefunctionbecomes so through the Jahn-Teller effect.
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In more general terms, the relationship between a fermion and ‘the rest of the
universe’can be considered as similar to the that of the total wavefunction in the
Jahn-Telleerffect. Isolated fermions cannot have single-valuedwavefunctions, but the
total wavefunction representing fermion plus ‘rest of the universe’ must be single-
valued.This duality occurs with the actual creation of the fermion state. To split away
a fermion from a ‘system’ (or ‘the universe’), we have to introduce a coupling as a
mathematicaldescription of the splitting. The coupling to the rest of the universe
preserves the single-valued nature of the total wavefunction, automatically
introducingthe extra term known as the Berry phase. Many physical effects, including
the Aharanov-Bohm effect, as well as the Jahn-Teller effect, are already associated
with this phase, and there are, no doubt, many others waiting to be discovered.

The reverse effect must also exist, in which bosons of spin 0 or 1 couple to an
‘environment’to produce fermion-like states.Perhaps the Higgs mechanism occurs in
this way, but a more immediate possibility is the coupling of gluons to the quark-
gluon plasma to deliver the total spin of %2 or 3/2 to a baryon. The six-component
baryonwavefunction has states equivalent to (KE % iipy + ijm) (KE + iipy + ijm) (KE £
iip; + ijm), where the py, Py, p; and * represent the six degrees of freedom for p.33
Theseof course, exist simultaneously in a gauge-invariantstate, but we can imagine
the p rotating through the three spatial positions leaving terms like (KE % iip + ijm)
(KE + ijm) (KE + ijm); (KE + ijm) (KE % iip + ijm) (KE + ijm), with the gluons
‘transferring’ the p between one (KE + ijm) and another, and so becoming bosons of
spin 1 with an effective contribution from the ‘environment’ due to the gluon sea
makingthem transfer spin Y.

It is almost certainly a universal principle that fermions / bosons always produce
a ‘reaction’ within their environment, which couples them to the appropriate
wavefunction-changingerm, so that the potential / kinetic energy relation can be
maintainecht the same time as its opposite. We can relate this to the whole process of
renormalizationwhich produces an infinite chain of such couplings through the
vacuum.The coupling of the vacuum to fermions generates ‘boson-images’and vice
versa.This suggests that the loop diagrams that lead to renormalisation could produce
therequired cancellation of fermion with boson loops without requiring the existence
of extra boson or fermion equivalents.54

20 Renormalization

To understand the principle, we need to use the nilpotent version of the Dirac
wavefunctionwhich is, typically, (KE + iip + ijm) for a fermion and (—KE + iip + ijm)
for an antifermion, these being abbreviated representions of 4-term bra and ket
vectors, cycling through the full range of *E and *p values. In terms of the
‘environment’principle, a fermion generates an infinite series of interacting terms of
theform:

29



(KE + iip +ijm)
(KE + iip + ijm) (=KE + iip + ijm)

(KE + ikp + ijm) (KE + iip + ijm)( KE + iip + ijm)

(KE + iip + ijm) (=KE + iip + ijm)( KE + iip + ijm) (-KE + iip + ijm), etc.

Selection of the appropriate terms in QED calculations now leads to a
cancellationof the boson and fermion loops of opposite sign at any level. The (KE +
iip + ijm) and (—KE + iip + ijm) vectors are an expression of the behaviour of the
vacuumstate, which acts like a ‘mirror image’ to the fermion. An expression such as

(KE +iip + ijm) k (KE + iip + ijm)
is part of an infinite regression of images of the form
(KE +iip +ijm) k (KE +iip + ijm) k (KE + iip + ijm) k (KE + iip + ijm) ...

wherethe vacuum state depends on the operator that acts upon it, the vacuum state of
(KE + iip + ijm), for example, becoming kK (KE + iip + ijm). In addition,

(KE +iip +ijm) k (KE +iip + ijm) k (KE + iip + ijm) k (KE + iip + ijm) ...
is the same as
(KE +iip +ijm) (KE +iip + ijm) (KE + iip + ijm) (KE +iip +ijm) ....

So, the infinite series of creation acts by a fermion on vacuum turns out to be the
mechanismfor creating an infinite series of alternating boson and fermion states as
requiredfor supersymmetry and renormalization. This is only true if the series is
infinite, because each ‘antifermion’ bracket has to be postmultiplied by K to alter the
sign of its E term. It also requires spin terms p of the same sign to produce spin 1
bosonsgspin 0, such as the mass-generatingliggs boson, would break the sequence.

The ‘mirror imaging’ process implies an infinite range of virtual E values in
vacuumadding up to a single finite value, exactly as in renormalisation. Significantly,
the vacuum wavefunctions for the fermion and antifermion are of the complementary
forms, (KE + ii p + ij m) and (KE + ii p + ij m), to those for the particles. It is also
significant that, in the classical context, the related Feynman-Wheeler process of
vacuumabsorption of radiation (discussed in section 17) again reduces the infinite
electronself-energyto a finite mass.
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21 Supersymmetry

‘Supersymmetry’'may be part of a much more general pattern. Bosons and fermions
seemto require ‘partner states’ as much as potential and kinetic energy are needed to
fully describe conservation. As previously stated, the kinetic energy relation is used
when we consider a particle as an object in itself, described by a rest mass My,
undergoinga continuous change. The potential energy relation is used when we
considera particle within its ‘environment’, with ‘relativistic mass’, in an equilibrium
staterequiring a discrete transition for any change. This fundamental relation, leads to
the significant fact that the nilpotent wavefunctions, in principle, produce a kind of
supersymmetry,with the supersymmetric partners not being so much realisable
particles,as the couplings of the fermions and bosons to vacuum states.

The nilpotent operators defined for fermion wavefunctions are also
supersymmetryperators, which produce the supersymmetric partner in the particle
itself. The Q generator for supersymmetry is simply the term (KE + iip + ijm), and its
Hermitianconjugate QT is (—KE + iip + ijm). Written out in full, of course, these are
respectivelyfour-termbra and ket vectors, with the E and p values going through the
completecycle of + and — values; and, with the application of the same normalization
thatwe have used for the vacuum operator, the anticommutator of Q and QT becomes
effectively E, or the Hamiltonian, as in conventional supersymmetry theory.
Multiplying by (KE + iip + ijm) converts bosons to fermions,or antifermions to
bosongthe p can, of course, be + or —). Multiplying by (—KE + iip + ijm) produces the
reverseconversion of bosons to antifermions, or fermions to bosons. In conventional
supersymmetryheory, boson contributions and fermion contributionsare of opposite
sign (with the operators having opposite signs of E) and automatically cancel in loop
calculations. The present theory retains this advantage without requiring extra
(undiscoveredjupersymmetric partners to the known fermions andbosons.

The spin % state, as we have seen, is always due to kinetic energy, implying
continuousvariation. and it is essentially that of the isolated fermion. Unit spin comes
from the potential energy of a stable state, and represents either a boson with two
nilpotents(which are not nilpotent to each other), or a bosonic-type state produced by
a fermion interacting with its material environment or vacuum, and, as a
consequencemanifesting Berry phase, Thomas precession, relativistic correction,
radiation reaction, zitterbewegung or whatever else is needed to produce the
‘conjugate’ environmental spin state. In the case of the isolated fermion we are
treatingthe action half of Newton’s third law; in the case of the fermion interacting
with its environment, it is the action and reaction pair. The existence of
‘supersymmetric’ partners seemingly comes from the duality represented by the
choiceof fermion or fermion plus environment.

In this context it is significant that, while the Klein-Gordon equation
automaticallyapplies to fermions as well as to bosons, the Dirac equation applies to
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‘spin 1’ particles created by the combination of fermion plus environment. The
consequencese the Berry phase, the Aharonov-Bohm effect, the Jahn-Teller effect,
the quantum Hall effect, zitterbewegungand other such phenomena. For a fermion or
bosonacting in this way with its ‘environment’, the supersymmetric operators do not
demandan extraset of bosons or fermions; the coupling of fundamental particles to
the vacuum becomes automatic in an infinite series of entangled states.

22 Aharonov-Bohm effect

The Aharonov-Bohm effect can be considered as an analogue of the Jahn-Teller
effect,and as another example of the effect of the Berry phase, but a consideration of
this phenomenon suggests that it may lead to a more profound understanding of the
meaningof the factor 2 in fundamental physics. In the Aharonov-Bohm effect,
electroninterference fringes, produced by a Young’s slit arrangement, are shifted by
half a wavelength in the presence of a solenoid whose magnetic field, being internal,
does not interact with the electron but whose vector potential does. The half-
wavelengthshift turns out to be a feature of the topology of the space surrounding the
discreteflux-linesof the solenoid. This space is not simply-connectedhat is, a circuit
roundthe flux line cannot be deformed continuously down to a point. Effectively, the
half-wavelengthshift, or equivalent acquisition by the electron of a half-wavelength
Berry phase, implies that an electron path between source and slit, round the solenoid,
involvesa double-circuitof the flux line (to achieve the same phase), and a path that
goesround a circuit twice cannot be continuously deformed into a path which goes
roundonce (as would be the case in a space without flux-lines).

The presence of the flux line is equivalent, as in the quantum Hall effect and
fractionalquantum Hall effect, to the extra fermionic ¥2-Spinwhich is provided by the
electronacting in step with the nucleusin the Jahn-Teller effect and makes the
potentialfunction single-valued,and the circuit for the complete system a single loop.
It is particularly significant that the U(1) (electromagnetic) group responsible for the
fact that the vacuum space is notsimply connected is isomorphic to the integers under
addition. In effect, the spin-Y2, Y2-wavelength-inducingature of the fermionic state
(in the case of either the electron or the flux line) is a product of discreteness in both
the fermion (and its charge)and the space in which it acts. (The U(1) group is also
relevantto fermionic states with zero electric charge, through the SW2) x U(1)
mixing; the U(1) component may even be considered, in such cases, as a necessary
consequencef fermionic discreteness.)In principle, the very act of creating a
discreteparticle requires a splitting of the continuum vacuum into two discrete halves
(aswith the bisecting of the rectangular figure with which we started), or (relating the
concept of discreteness to that of dimensionality) two square roots of O.
(Mathematicallythe identification of 1 as separate from 0 also implies that 1 + 1 =2,
reflectingthe fact that physics and mathematics have a common origin in the process
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of counting.)
23 Conclusion

The numerical factor 2 has become an almost universal component of fundamental
physics,playing a significant role in both quantum theory and relativity. Its origin and
meaning can be explained in surprisingly simple terms, using relatively
unsophisticateghathematics.In fact, the origin of the factor 2, in all significant cases
— classical, quantum, relativistic — is in the virial relation between kinetic and
potentialenergies. Careful study of the factor reveals that it is the link between the
continuousand discretephysical domains, and their manifestations in many areas of
physics. In principle, the differences between stochastic and quantum
electrodynamicsl.orentz- and Einstein-type relativities, Schrodinger and Heisenberg
versionsof quantum mechanics, waves and particles, spin 1/2 and spin 1 units,
fermionsand bosons, are nothing but those between kinetic and potential energies,
betweenaveraged-out changing and fixed steady-state values, or, indeed, between
trianglesand rectangles.

Theresult of all thesecases is that kinetic energy variation may be thought of as
continuousbut starting from a discrete state; potential energy variation, on the other
hand, is a discrete variation, starting from a continuous state. Each creates the
oppositein its variation from itself. Kinetic energy and potential energy create each
other, in the same way as they are related by a numerical relationship. We can
considerthe kinetic energy relation to be concerned with the action side of Newton’s
third law, while the potential energy relation concerns both action and reaction.
Becausedf the necessary relation between them, each of these approaches is a proper
andcomplete expression of the conservation of energy. Ultimately, the factor 2 is an
expressiomnf the discreteness of both material particles (or charges) and the spaces
betweenthem, as opposed to the continuity of the vacuum in terms of energy. The
samediscreteness also implies (though more subtly) the concept of dimensionality.

In more general terms, the factor 2 is an expression of a fundamental duality in
nature,and duality is the result of trying to create something from nothing — the
Aharanov-Bohneffect is a classic case, as is also the nilpotent algebra used for the
fermion wavefunction. Fundamentally, physics does this when it sets up a probe to
investigate an intrinsically uncharacterizable nature. Nature responds with
symmetricalopposites to the characterization assumed by the probe, which, in its
simplestform, is constituted by a discrete point in space. It has been demonstrated
previouslythat this generates a symmetrical group of fundamental parameters (space
— the original probe — time, mass and charge — the combined response), which are
definedby properties which split the parameters into three C, groupings, depending
on whether they are conserved or nonconserved, real (or orderable) or imaginary (or
nonorderable),continuous or discrete. Each of these divisions may be held
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responsibleor a factor 2, for duality seems to be the necessary result of any attempt
atcreating singularity.

While the continuous or discrete duality is obvious from the distinction between
potentialand kinetic energies, this distinction also incorporates the duality between
conservedand nonconserved quantities (or fixed and changing conditions). The
duality may also be expressed in terms of the distinction between space-like and time-
like theories (for example, those of Heisenberg and Schrodinger, or of quantum
mechanicsnd stochastic electrodynamics), which are not only distinguishedy being
discreteand continuous, but also by being real and imaginary. Though a single duality
separatesuch theories, it is open to more than one interpretation because each pair of
parameterss always separated by two distinct dualities.

The very concept of duality implies that the actual process of counting is created
atthe same time as the concepts of discreteness, nonconservation, and orderability are
separated from those of continuity, conservation, and nonorderability. The
mathematicaprocesses of addition and squaring are, in effect, ‘created’ at the same
time as the physical quantities to which they apply. The factor 2 expresses dualities
which are fundamental to the creation of both mathematics and physics.

Appendix

A correlation between alternative explanations for the factor 2 in various aspects of

physics:

Kinematics \Y
Gases

Orbits
Radiationpressure
Gravitationallight deflection R
Fermion/ boson spin
Zero-pointenergy
Radiationreaction
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actionand reaction
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dimensionality
absorptiorand emission
objectand environment
relativity
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