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Abstract. A series of representations of the fundamental theory that physics 

has a symmetrical or dualistic structure is used to show that both physical 

and mathematical ideas result from an attempt to maintain a zero total 

content in any fundamental conceptual scheme for explaining nature. 

 

 

INTRODUCTION 

 

The fundamental theory to be represented is the idea that physics has 

its origins in a symmetrical structure which preserves its conceptually zero 

content. It has become popular in recent years to suppose that the total 

energy in the universe, counting gravitational energy as negative, may be 

zero, and that the entire universe may have emerged out of pure 

nothingness through something like a quantum fluctuation. Perhaps also, if 

we include the vacuum state, there is some kind of ultimate balance 

between matter and antimatter. It is not unusual, in fact, to read statements 

like the one by the well-known chemist and science writer Peter Atkins 

[1994], who has said of physical matter that ‘the seemingly something is 

elegantly reorganized nothing, and … the net content of the universe is … 

nothing’. However, it is not just matter and the universe that appear to be 

nothing, but the entire conceptual scheme of which these are merely 

components (nihil ex nihil fit). Mathematically, only zero is absolutely 

unique, and this leads one to suppose that an absolute or universal theory 

must in a sense be, ultimately, a theory about the meaning of nothingness. 

The idea of conceptual nothingness has been proposed on many occasions 

by the author as the basis of physics [Rowlands, 1983, 1991, 1999, 2001], 

in the sense that the perfect symmetry between the only truly fundamental 

parameters in nature is exactly of this sort, even in algebraic terms. In view 

of the intrinsically mathematical nature of physical quantities, and the 

probability that mathematics and physics have the same conceptual origin, 

it also seems to make sense to describe mathematics in terms of the same 

totally zero structure. The question then becomes: how do we get 

something from nothing? Such a question is unlikely to be answered on the 

basis of an appeal to pure first principles without some initial empirical 
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investigation into the way that physics and mathematics appear to be 

structured at their foundations. A convenient starting-point is the evidence 

of duality, or, rather, something which leads ultimately to the creation of 

this concept, as a fundamental principle. 

 

DUALITY AND ITS GROUP STRUCTURE 

 

Duality is fundamental to physics and mathematics. All operations are 

dual operations. All objects are dual objects. All physical and mathematical 

theories are dual theories. As Nicholas Young writes in a well-known 

textbook [1988], ‘the idea of duality pervades mathematics’, while duality 

has, from the beginning, been the basis of the author’s theories of 

mathematical physics and philosophy of science [Rowlands, 1983, 1991, 

1999, 2001]. In effect, we can’t define something without defining also 

what it is not. Alternatively, we can’t characterize ‘nature’ or ‘reality’, even 

to the extent of saying whether it has an independent existence (is 

ontological) or is a product of our perception (is epistemological). So, the 

concept even has a fundamental philosophical manifestation. Any attempt 

to characterize it in one aspect will automatically lead to our discovery of 

the ‘opposite’ characterization in another. Every ‘probe’ will meet with an 

opposing ‘response’. 

Why is this? It seems that physics and mathematics, as we have 

supposed, are attempts at creating something from nothing. Although we 

assert that we have given nothing a character or aspect, it is, in fact, still 

nothing, if we take the totality of probe and response. An obvious case is 

provided by the conservation of linear momentum in an explosion problem; 

gain of positive momentum in one direction has to be countered by an equal 

gain of negative momentum in a direction which is precisely opposite. The 

totality remains zero. The example is a very familiar one, and it is usually 

treated as an illustration of a very fundamental law of physics, with an 

independent existence. The law is, in fact, however, just one illustration of 

a very much more fundamental principle of duality in nature, which can be 

seen as the ultimate origin of both physics and mathematics. A ‘theory of 

everything’ needs first to be a ‘theory of nothing’. 

How, then, does this principle of duality operate? The answer has to 

be: in the simplest way possible. It is not possible to imagine any duality 

simpler than that provided by the C2 group. We could describe it, in 

mathematical terms, by the use of the elements 1 and –1, but our starting 

concept must, in fact, be even simpler than that, and cannot yet assume the 

discrete numbering associated with the term ‘dual’. The concept of 1 may 

appear to be simple, but it is in reality loaded with information about the 
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meaning of discreteness, in addition to ordinality, which doesn’t appear at 

the most fundamental level. A simpler opposition is that between + and – 

applied to the unspecified entities which are generically described as the 

reals. A mathematical-computational approach to this is given by the 

author, in a paper written with Bernard Diaz [Rowlands and Diaz, 2002]. 

In effect, the simplest possible thing other than 0 that we can imagine 

is , or can be described as , where  is a totally unspecified or 

undifferentiated entity, and its automatic negation or ‘conjugation’ is the 

thing we describe as –. In principle, as soon as we have , we have no 

option but to take – as well, in order to maintain the zero totality. That is, 

defining , at all, automatically creates what we will eventually call a 

‘dual’ system. Ultimately, we will find that this is equivalent to requiring 1 

+ 1 = 2, and generating the Peano idea of ‘successor’, and a natural (binary) 

numbering system, which avoids the Gödel problem through a zero totality, 

but this will require the generation of a concept of discreteness which is not 

a direct feature of . We cannot, at this stage, even take  – (–) to be, 

say, 2, until we have defined 2, and the concept of number generally, to 

exist. The existence of + and – signs can thus be taken as an expression of 

ordinality, but not yet of a discrete ordinality (as with the Dedekind ‘cut’, 

which, despite its name, is a definition of ordinality without a prior 

assumption of discreteness), and the expression of this process as duality, 

or the group structure as C2, cannot yet be taken as explicit. 

We also have no option but to relate – to  in some way other than 

defining their totality as 0, and the identity – × – =  ×  then becomes 

deeply significant in establishing that the relation between these elements is 

a group relationship, and that the ‘multiplication’ and ‘squaring’ of 

elements, in addition to identity and inversion, are operations which are 

fundamental to the principle that we will ultimately describe as ‘duality’, 

when we have introduced discreteness. Of course, without some concept of 

enumeration, and no way of identifying  more exactly,      – × – =  × 

 is describable only by the generic –(–) or ; there is no defined 

concept of ‘unit’, and the × operation is not yet identifiable as 

‘multiplication’. 

But, suppose now that we require a counter concept, even for the  

and – category, that is, we require a system which avoids ‘privileging’ 

these, and privileging one with respect to the other. We may then suppose 

that conjugate terms must exist which allow us to generate – in the same 

way as we generate  from – (in addition to its generation from ). In 

mathematical terms, we describe these as members of the complex set, and 

each must have its own conjugate. Symbolically, we represent the new 

terms as C  and –C . However, the new category C  remains undefined in 
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respect to the real category, and has no ordinal relation to it. Consequently, 

there are infinitely possible or indefinitely possible systems and 

combinations that are represented by this symbol. 

However, when we investigate the combinations of possible C  terms, 

we find a distinct separation between the infinitely possible combinations 

leading to the original real category , and the very definite 

noncommutative ones leading to the conjugate  –, where only ‘one’ 

independent C -type concept (say C ′) is associated with each conceivable C . 

Thus, we find that the former are infinitely extendible, while the latter are 

cyclic or enclosed. It is at this point that we can introduce discreteness, and 

the concept of ‘unity’, into mathematics. By choosing the default position 

of assuming indistinguishability between the C s in every conceivable 

respect (i.e. none is ‘privileged’), we can create a regular ordinal sequence, 

which, although arbitrary in principle, becomes a series of integral binary 

enumerations, which can also be applied to ordinality in the real categories. 

The consequent minimising of variation within the generating process 

additionally allows us to retain (and even create) the powerful notion of 

group structure. We can represent the generality of the process in the form: 

 

    undefined   

 , –   conjugation 

 , –, C , –C    complexification 

 , –, C , –C , C ′, –C ′, C C ′, –C C ′  dimensionalization 

 , –, C , –C , C ′, –C ′, C C ′, –C C ′,  repetition 

 C ′′, –C ′′, C C ′′, –C C ′′, C ′C ′′,–C ′C ′′, 

 C C ′C ′′, –C C ′C ′′  

  

The logical operations involved in the sequence can be expressed in a 

quasi-algebraic form though operations such as × and – are not limited to 

an algebraic interpretation until we create the concept of integral 

sequencing via the ordinal series of closed systems: 

 

  ×  = – × – =  

  × – = – ×  = –   

  × C  = C  ×  = C    

 C  × C  = –C  × –C  = –  

 C  × –C  = –C  × C  =   

 C ′ × C ′ = –C ′ × –C ′ = –  

 C C ′ × C C ′ = –C C ′ × –C C ′ = –   closed (anticommutative) 

 C C ′′ × C C ′′ = –C C ′′ × –C C ′′ =   unlimited (commutative) 
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The character sets effectively represent all those, including , – 

which are generated by operating on themselves: 

 

 () × () = () 

 (, –) × (, –) = (, –) 

 (, –, C , –C ) × (, –, C , –C ) = (, –, C , –C ) 

 (, –, C , –C , C ′, –C ′, C C ′, –C C ′) × (, –, C , –C , C ′, –C ′, C C ′, –C C ′) 

                       = (, –, C , –C , C ′, –C ′, C C ′, –C C ′),  etc. 

 

The closed sets are those which introduce discreteness through 

anticommutativity. 

We are now in a position to extend the argument using the integral 

sequence we have created. Beginning with the C2 group, which can now be 

represented by 1 and    –1, a dual system will extend this to four elements, 

producing an equivalent to C2 × C2, and we choose the only way of 

extending a group including 1 and –1 to encompass four elements, by 

making the unknown elements (hitherto represented by the generic C  and –

C ) acquire the characters that we describe by the algebraic symbols i and –

i. The group of 1, –1, i, –i is not, of course, C2 × C2, or D2, but C4. 

However, it contains the same information as C2 × C2, for we can write this 

information in the form of the complex ordered pairs: 1, i; 1, –i; –1, i; –1, –

i, which is of the form C2 × C2, and is the only domain in which ± i can 

exist. 

If we are now required to dual the C4 group, the most efficient and 

ordinally-structured way of retaining elements equivalent to 1, –1, i, –i in 

an extended group of order eight, is by supposing that we can expand i, –i 

into the necessarily cyclic and noncommutative operators i, –i, j, –j, k, –k, 

which we describe as quaternions. The definition of the quaternion group 

Q8, with elements 1, –1, i, –i, j, –j, k, –k, is simply a statement of the fact 

that the complex C4 group has been dualistically extended on the basis that 

ij (= k) has the same kind of properties as i and j, with (ij)(ij) = –1. Again, 

we can represent the same information by a C2 multiplication, using a 

group of the form C2 × C2 × C2. The cyclic nature of the quaternions is 

significant here, because the eight possible (C2 × C2 × C2) combinations of 

 i,  j,  k become sufficient to generate the entire information produced 

by the elements of Q8. In effect, describing a set of operators, such as i, j, k, 

as ‘cyclic’ means reducing the amount of independent information they 

contain by a factor 2, because k, for example, arises purely from the 

product ij. It could even be argued that the necessity of maintaining the 

equivalence of the Q8 and C2 × C2 × C2 representations is the determining 

factor in making the quaternion operators cyclic. In addition, the cyclicity 
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prevents the definition of further complex terms, such as I, where (iI)(iI) = 

–1, though there are an unlimited number of I terms such that (iI)(iI) = 1. 

The process can be continued further using terms of this kind. We dual 

Q8 by complexifying it to the complex quaternion or multivariate ‘vector’ 

group 1, –1, i, –i, i, –i, j, –j, k, –k, ii, –ii, ij, –ij, ik, –ik, of order 16, which 

has a related C2 × C2 × C2 × C2 formulation, and which may also be written 

1, –1, i, –i, ii, ii, ij, –ij, ik, –ik, i, –i, j, –j, k, –k, where a complex 

quaternion, such as ii becomes the equivalent of the multivariate vector i 

(see Appendix I). (It is significant, here, that a possible alternative dualling 

of quaternions to octonions, with sixteen components, would fail to 

maintain the group structure, as octonions are nonassociative.) We then 

expand the complex terms to a three-dimensional status, to produce a 

double quaternion group, say 1, –1, I, –I, J, –J, K, –K, i, –i, j, –j, k, –k, of 

order 32, which has a related C2 × C2 × C2 × C2 × C2 formulation. Then we 

complexify again, to produce a multivariate vector-quaternion group 1, –1, 

i, –i, ii, –ii, ij, –ij, ik, –ik, i, –i, j, –j, k, –k, i, –i, j, –j, k, –k, ii, –ii, ij, –ij, ik, 

–ik, and 36 real and complex combinations of vectors and quaternions, 

forming a group of 64, with a related C2 × C2 × C2 × C2 × C2 × C2 

formulation. Because of the reduction of information involved in defining 

both multivariate vectors and quaternions as cyclic, and in one producing 

complex, and the other real, products, the C2 × C2 × C2 × C2 × C2 × C2 

formulation can be expressed by the 64 possible combinations of  i,  j,  

k,  i,  j,  k, the algebra of the Dirac gamma matrices. Further dualling is 

possible on the same basis, but it is clear that only three fundamental 

principles are required to continue the dualling to infinity – opposite signs 

(or equivalent), the distinction between real and imaginary components, 

and the introduction of cyclic dimensionality – and to establish every 

conceivable combination of these, that is to establish every type of dualling, 

requires a group of 64 elements. 

 

C2 C2    1 conjugate 

C4 C2  C2    1,  i complexify 

Q8 C2  C2  C2   1,  i,  j,  k dimensionalize 

V16 C2  C2  C2  C2    1,  i,  i,  j,  k complexify 

QQ32 C2  C2  C2  C2  C2    1,  I,  J,  K,  i,  j,  k dimensionalize 

VQ64 C2  C2  C2  C2  C2  C2     1,  i,  I,  J,  K,  i,  j,  k  complexify 

 

The process becomes entirely repetitive at the level of V16, while VQ64 

is what we obtain by combining C2, C4, Q8, and V16 as independent 

elements, establishing conjugation, complexification, dimensionalization 

and repetition. Beyond this stage, we can consider the sequence proceeding 
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through an infinite series of quaternionic structures by repeated processes 

of complexification and dimensionalization, creating an infinite-

dimensional Grassmann algebra, whose units are each quaternionic. 

Repetition necessarily sets in as soon as we establish the principle of 

closure, and closure, as we shall see, allows us an immediate procedure for 

returning to zero. (The process of conjugation, of course, can be repeated, 

like those of complexification and dimensionalization, but it is defined in 

such a way that repetition produces no new structure.) 

 

THE PARAMETER GROUP 

 

So far, this sounds purely mathematical. What relevance, then, does it 

have to physics? The answer is that it is, in fact, purely physical in origin. 

Duality is a physical requirement of the description of nature, and not 

necessarily a requirement of an abstract system of logical thought, though it 

may well be that such a system cannot be separated from considerations 

derived from physical requirements. In effect, when we define the dual, we 

define the physical. The words are synonymous. So, we should expect to 

see manifestations of these structures in physical ‘reality’, as we ordinarily 

perceive it. 

From purely empirical considerations of physics, it has been possible 

previously to suggest that it is based on the relationships between only four 

fundamental parameters: space, time, mass and charge (where charge is a 

general term for the sources of the electromagnetic, weak and strong 

interactions) (see Appendix II). Further investigation of these suggest that 

the most fundamental properties and ‘antiproperties’ they possess are as 

follows: 

 

 space nonconserved real  countable 

 time    nonconserved  imaginary      noncountable 

 mass     conserved       real     noncountable 

 charge   conserved  imaginary countable 

 

This has the structure of a C2 × C2 or D2 relationship, in which any of 

space, time, mass or charge may be the group identity element, and each is 

its own inverse (see Appendix III). It has also been shown that the 

symmetry is exact, and absolutely unbroken within physics. Especially 

significant, however, is the fact that countability or discreteness is a 

necessary requirement for cyclic multidimensionality, for 

unidimensionality is an obviously necessary property of a continuous or 

noncountable quantity – it can’t have an origin. But, multidimensionality is 
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also a necessary property of discreteness (at least in a nonconserved 

parameter like space). Discreteness has to have a reference or origin; we 

can’t imagine observing discreteness in space without at least another 

dimension for reference. However, when we investigate space and charge, 

we find further that the dimensionality in each case is also three-

dimensionality and cyclic, just as we require for our dual system. Space, 

being real, has the properties of a multivariate vector, with the associated 

pseudoscalar being imaginary time, in the ‘4-vector’ combination; while 

charge, being imaginary, has the properties of a quaternion, with the 

associated real scalar being mass. In the case of the quaternions, also, it is 

significant that three-dimensionality is the only dimensionality which, 

mathematically, preserves the group structure; the mathematical possibility 

is determined at the same time as the physical. With the arguments already 

presented, we can additionally say that the origin of the physical concepts 

of continuity and discreteness lie in the duality which requires the creation 

of a cyclic three-dimensionality in our conceptualization of nature. This is, 

in fact, what we mean by continuity and discreteness. 

We can see now that two of the distinctions between the parameters, 

which we have derived inductively from observed physical characteristics 

(real / imaginary and noncountable / countable), are identical to the C2 

distinctions which extend the original C2 duality into complexity and cyclic 

dimensionality. However, even the original C2 duality (1 / –1) originated 

from the act of creating ‘something from nothing’ (1 from 0), the very 

definition of nonconservation, as is the concept of ‘successor’ which it 

implies. So, in principle, our group of space, time, mass and charge has all 

the elements required to extend physical duality to infinity. And, our choice 

of the distinction between conservation and nonconservation (in effect, 

incorporating 0 directly as the never-used ‘totality’, and leaving –1 as 

implicitly understood rather than explicit) even allows us to simplify a 

potential C2 × C2 × C2 structure into the simpler C2 × C2 we have used 

above, with the added bonus that we can represent it as identity element (or 

single sign of scalar) plus three ‘quaternion’ terms, thus creating a powerful 

mapping of the four parameters onto a quaternion space. Alternatively, we 

could represent mass and charge as ‘conjugated’ quantities, in the sense 

that creation of a + value can only be accomplished at the same time as the 

creation of an equivalent – value. So the group could be written in a form, 

in which the property / antiproperty distinctions occur as examples of 

successive applications of the dualling process (nonconjugated → 

conjugated; real → complex; nondimensional → dimensional): 
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 space nonconjugated real dimensional 

 time nonconjugated complex nondimensional 

 mass conjugated real nondimensional 

 charge conjugated complex dimensional 

 

Mathematically, it is possible to create a dual set or parameters, one 

form of which is seen in certain versions of the Dirac theory, in which 

certain characteristics of space and time, and mass and charge are reversed, 

for example the real / imaginary characteristics. 

 

 space* nonconserved imaginary countable 

 time*    nonconserved real noncountable 

 mass*     conserved imaginary             noncountable 

 charge*   conserved real countable 

 

The combined group is then extended to C2 × C2 × C2, with a quaternion 

representation (Q8) with both signs of scalar. This extends the mathematical 

representational space, but is not needed in the physical representational 

space, and, in the more sophisticated (quantum field) versions of Dirac 

theory becomes redundant. 

There is also a distinction between the representations of the 

distinctions between the parameter properties (e.g. real / imaginary) by 

existence / nonexistence conditions, as here; and the explicit representation 

of these properties by their explicit natures (e.g. vector / quaternion). The 

minimum representation in the latter case is of the order C2 × C2 × C2 × C2 

× C2 × C2, or the Dirac group. In the former case, there are at least two 

striking visual representations of the group relations, which bring out the 

significance of the C2 distinctions and of the principle of cyclic 

dimensionality. 

 

COLOUR REPRESENTATION 

 

The four parameters, space, time, mass and charge, are represented by 

concentric circles, the parameter chosen as the identity element for the 

group occupying the centre circle. The division of the properties into three 

components is reflected by the division of the circles into three sectors. The 

properties (say, Real, Nonconserved, Discrete) are represented in Figure 1, 

by primary colours (say, Red, Green, Blue), and the ‘antiproperties’ 

(Imaginary, Conserved, Continuous) by the complementary secondary 

colours (Cyan, Magenta, Yellow). All of these choices are individually 
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arbitrary (as we see from Appendix III), as is the choice of secondary 

colours to represent the properties, and primary colours to represent the 

‘antiproperties’ in Figure 2. The division between properties and 

antiproperties is also a completely free choice. Only the overall pattern is 

fixed. As configured, with Space selected as the identity element, and the 

colour representation for the properties selected as indicated, the innermost 

circle represents Space, the next Charge, the next Mass, and the outermost 

circle Time. But this will be changed as soon as we redefine any of the 

colour representations or exchange the status of any or the property-

antiproperty pairs. In addition to being an alternative representation of the 

main group, Figure 2 may also be used, simultaneously with Figure 1, as a 

representation of the dual group, which can be obtained (for example) by 

exchanging the status of real and imaginary quantities (as in some versions 

of the Dirac theory). 

 

                        Figure 1                                             Figure 2 

 
The nature of the fundamental parameter group is demonstrated in this 

representation by summing up the colour combinations in each of the 

circles. This results in a white inner circle for the identity element, and a 

sequence of the three primary colours (Figure 3) or secondary colours 

(Figure 4), which adds up to a white totality. 
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                         Figure 3                                                 Figure 4 

 

 
 

Adding up the property-antiproperty combinations in the sectors also 

results in a white totality for each sector, as expected (Figure 5). 

 

                                                     Figure 5 

 

 
Clearly, this colour representation derives its effectiveness from the fact 

that a three-colour system is a simulation of three-dimensionality in an 

alternative vector or quaternion representation. Such representations are 

also possible in a more direct form.  

 

3-D (VECTOR) REPRESENTATION 

 

The alternative (vector or quaternion) representation (Figures, 6 and 7) 

can be seen as a literal interpretation of the x, y and z, used in the tables in 

Appendix III. The x, y and z directions represent the properties, and the –x, 

–y, and –z directions the antiproperties (again, according to an arbitrary 

choice). The four ‘Red’ lines, in Figure 6 (shown here as continuous), 
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drawn from the origin of these 3-dimensional axes, then represent the four 

parameters, and the ‘Cyan’ lines (shown as dotted) those of the dual group. 

Figure 7 shows the same representation as Figure 6, but without the axes.) 

The ‘Red’ lines are reflections of each other in two planes. We can 

represent these as preserving the sign of the volume element (or identity), if 

the axes are taken in the same cyclic sense; and so they correspond to the 

parameter group The Red plus Cyan lines are the reflections of each other 

in a single plane, and do not preserve the sign of the volume element; and 

so form the parameter group taken with its dual. The reflection of a line in 

three planes produces its exact dual. 

It will be apparent that the representation of the dualities of the 

parameter group using either the three real spatial dimensions or the 

pseudo-dimensions of the three primary colours is a powerful way of 

bringing out the connections between duality and dimensionality, and the 

fact that all the individual dualities are, in effect, versions of the same 

mechanism. It is also a convenient way of showing how the parameter 

group can be used to represent a kind of ‘super-duality’ of all the elements, 

conveniently displayed using the particular duality of dimensionality. 

 

Figure 6 
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Figure 7 

 

 
 

To map between the colour and 3-D representations, we could 

represent the positive x, y, z axes in Figure 6 by the primary colours, say 

Red, Green, Blue, against a black background, and the corresponding 

negative directions by the complementary secondary colours, which, in this 

case, would be Cyan, Magenta, Yellow. The four Red vectors of Figure 6 

would become respectively White, Blue, Red, Green, as determined by the 

colour coding in Figures 1 and 3, and the four Cyan vectors of Figure 6 

would become respectively White, Yellow, Cyan, Magenta, as determined 

by the colour coding in Figures 2 and 4. 

 

 

TETRAHEDRAL REPRESENTATION 

 

Yet another 3-D representation (Figure 8) would place the parameters 

at the vertices of a regular tetrahedron, with the six edges coloured to 

represent the properties and antiproperties as in Figure 1. 
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Figure 8 

                              

We can consider the faces of the tetrahedron to be the members of the dual 

group, and, clearly, an alternative representation would reverse primary and 

secondary colours and / or the roles of faces and vertices. It might be 

possible to consider the tetrahedron as close-packed with inverted 

tetrahedra with complementary colour-representation in an all-white solid-

space, which can be extended to infinity. 

An interesting possibility is that a structure like the one in Figure 8, if 

flattened out in a 2-dimensional space, could be considered as a ‘dart’ or 

‘kite’ in a Penrose tiling pattern (the base line being optional to the 

connections between the vertices representing the parameters). Penrose 

tiling is, of course, a five-fold symmetry, and, typically, a group of five 

darts (or kites) will produce a star-shaped pattern with each of the darts 

joined with all the others at its apex, and with its two nearest neighbours 

along two of its edges. The star then has five inner and fiver outer vertices, 

and, surrounding a central star made of darts, we will have ten kites, each 

joined by two edges to two nearest neighbours, and by another edge to one 

of the ten outer edges of the star. If we assume that each of the 4 vertices of 

any dart (3 symmetric and 1 asymmetric) must represent one of space, time, 

mass and charge, and that joint vertices may only represent one parameter, 

then putting a 3-dimensional parameter like charge or space, at the centre of 

the star forces us to choose the inner and outer vertices in such a way that 

the other 3-dimensional parameter occurs three times in the five inner or 

outer vertices, while each of the other parameters occurs only once. It is 

interesting that another five-fold structure (the Dirac algebra) emerging 

from a combination of two types of 3+1-component units (space-time 4-

vectors and mass-charge quaternions) is also forced to ‘privilege’ one of its 

two 3-dimensional quantities, space or charge. 
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THE DIRAC NILPOTENT 

 

In the parameter group, not only are the properties dual, but so is the 

distribution between the parameters. This is why the minimum 

representation of the full duality is the Dirac algebra, of order C2 × C2 × C2 

× C2 × C2 × C2, and produced by the 64 possible combinations of the 

‘double vector’,  i,  j,  k,  i,  j,  k. Hidden within this representation, 

but expressive of the cyclic nature of the operators (and apparent in Figures 

6 and 7), are the respective pseudoscalar and scalar terms,  i and  1 (and 

we could, alternatively, use the ‘double vector’,  i,  j,  k,  ii,  ij,  ik). 

Leaving out  signs, the full representations are: space (i, j, k), time (i), 

mass (1), and charge (i, j, k). The fact that the Dirac algebra can be derived 

from a combination of two three-dimensional operators now suggests a 

further possibility, based on our mathematical and visual representations of 

the group. This is that one of the two three-dimensional parameters may be 

mapped on to the other three parameters, represented as the ‘dimensions’, 

and, in fact, the smallest set of units from which the full algebra can be 

derived comes from exactly such a mapping. We take, for example, 

 

 time  space  mass  charge 

 

   i i   j   k   1   i  j  k 

 

and, taking, each of the units of charge onto one of the ‘dimensions’ 

represented by time, mass and space,  

   i i   j   k   1   i  j  k 

   k     i    j   

create the following combinations: 

 

   ik ii  ij  ik   j  

 

A set of five units of this kind, or pentad, will always generate the 

entire Dirac algebra of 32 parts (excluding signs). The 32 parts turn out to 

be 1 and i, and six Dirac pentads, three based on the quaternion operators 

(as here) and three on the vector operators. Any of these sets can be used as 

the basis for the five gamma matrices in the Dirac equation, but it is most 

convenient to use the quaternions, as here, because charge is a conserved 

quantity, and the mathematical structure then has a convenient physical 

interpretation. (In the case of vector space, the components are not uniquely 

determined, because the quantity is nonconserved, and can even be 

arbitrarily reduced to a single one. However, the conservation of charge is 
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directly related to the conservation of angular momentum, and so brings in 

the spatial rotation simultaneously, as becomes evident in the full 

explanation of symmetry-breaking.) The combined units take on the 

physical characteristics of their component quantities. The charge units 

introduce conservation and discreteness (quantization) to all the quantities. 

However, the new conserved quantities retain their respective pseudoscalar, 

vector and real scalar identities, as Dirac energy, Dirac momentum and 

Dirac rest mass: 

   ik ii  ij  ik   j  

   E      p  m 

In a nonconserved form they produce the respective quantum operators: 

    /t         m 

Treating the momentum term as a single quantity, the free-fermion 

Dirac state vector now becomes a nilpotent ( ikE  ip + jm) e–i(Et – p.r.), 

where ( ikE  ip + jm) expresses the absolute conservation of charge and 

mass(-energy), and the exponential term, operated upon by ( ik /t  i + 

jm), the absolute nonconservation of space and time. The identities of the 

three ‘charge’ operators are preserved, even in the combinations of ( ikE  

ip + jm), for they now become discriminated into ones with timelike 

(weak), spacelike (strong) and masslike (electric) properties, and the effects 

can be distinguished physically by the aspects of angular momentum 

conservation to which they relate. The Dirac algebra, which produces the 

simplest possible combination of all the dualistic properties required by 

space, time, mass and charge, generates a broken symmetry in the 

manifestations of the charges’ interactions. 

Significantly, the term ( ikE  ip + jm), which is expressed most 

conveniently as a row or column vector with four components (yet another 

4-vector mapping, and one which can be accomplished with the four 

quaternion components, 1, i, j, k, if required) is a nilpotent or square root of 

zero, a precise expression of the fundamentally dualistic process of 

returning ‘something’ back to ‘nothing’ through a squaring operation. The 

classic way of doing this is through the Dirac equation in which the 

nonconservation operator ( ik /t  i + jm) is applied to the state vector 

( ikE  ip + jm) e–i(Et – p.r.), in which ( ikE  ip + jm) represents the 

conserved terms, so producing a zero result. This expresses the fact that our 

fundamental duality has been represented in terms of conservation and 

nonconservation, and that the effect of applying both is to maintain the zero 

totality. 

The Dirac nilpotent represents the most concise packaging of the 

dualistic information contained in the parameter group, the most complete 

way of parameterizing nature; and, as we have seen, the combination of all 
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the desired physical elements, with all the inherent symmetries, into a 

single, parameterization of nature, is the same as the process of 

‘quantization’ of energy, momentum (or angular momentum) and ‘rest 

mass’. 

The interaction of a fermion with the (infinite) vacuum, or mass-energy 

continuum, produces an infinite succession of products or superpositions of 

Dirac nilpotent states. This extends the dualling processes to infinity. Each 

of the ‘virtual’ states produced also acts in the same way, producing a 

pattern of the same form as the Conway system of constructed real 

numbers. The requirement of infinite dualling ensures the entanglement of 

all states in the universe (although, as with classical interference, 

decoherence will make this virtually unobservable except in special cases). 

It seems that we get something from nothing, not just in a physical 

way, by perfect symmetry between the parameters denying overall 

characterization, but also literally, by making the fundamental unit of our 

characterization a square root of zero, and that this becomes zero in the 

Dirac equation when we apply to it a differential operator, and generate an 

exact equal to it as an eigenvalue. The Dirac equation itself expresses the 

fundamental duality of our view of ‘nature’, for the left-hand term (the 

differential operator) specifies the nonconserved aspects, and the right-hand 

term (the wavefunction) the conserved aspects. Any individual nilpotent 

wavefunction structure (kE + iip + ijm) must then be unique because a 

superposition of identical ones would zero the wavefunction of the entire 

universe, and Pauli exclusion becomes obvious. This specification of 

uniqueness requires instant correlation, at the same time as the 4-vector 

nature of the operator requires time-delayed action between discrete 

sources. It is also a reflection of the uniqueness or local conservation of 

individual charge components. 

 

THE FACTOR 2 

 

Duality has an astonishingly simple manifestation in physics through 

the appearance of the factor 2 everywhere where it becomes significant. 

This is discussed in detail in the paper ‘The physical significance of the 

factor 2’ [Rowlands, 2002]. The main result of this is that each process that 

doubles the options available also produces a doubling of the physical 

effect which can be reduced to simple numerical terms. At the same time 

this is often balanced by a halving of the options in another direction. 

Thus, when we describe a physical process using constant, rather than 

changing, terms, we are effectively using both sides of the + / – duality at 

once. This is the case when we use potential, rather than kinetic energy 
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equations, or both action and reaction sides of Newton’s third law, or even 

relativistic, rather than rest, mass. Relativity itself does not introduce the 

factor 2, but relativistic equations can often be used as classic examples of 

changing conditions. The most controversial instance in historical terms is 

the double bending of light rays in a gravitational field, which can, in fact, 

be seen as an example of the use of a kinetic, rather than potential, energy 

equation. Of coursing, halving in one respect may lead to doubling in 

another. So halving the energy, by using a kinetic term, produces a 

doubling of the angular deflection; but it is also possible to produce the 

doubling directly by taking both space- and time-related effects into 

account. This could be seen as an application of the second route to duality: 

complexification, or the adding of a complex term to a real one. It is 

significant here that the group relationship between the physical parameters 

is so integrated that such apparently alternative explanations emerge 

without any fundamental contradiction. Both explanations are equally true, 

and neither has precedence over the other. 

Another significant alternative can be seen in the explanation of half-

integral fermion spin and its effects. It is possible to derive the resulting 

magnetic properties using a classical kinetic energy equation, and so using 

one side of the + / – duality. On the other hand, both the Dirac and 

Schrödinger equations derive the half-integer value for spin indirectly by 

using the doubling effect produced by the third process of duality: 

dimensionalization. This comes about in both cases via the anticommuting 

properties of multivariate momentum vectors, a direct result of 3-

dimensionality. What this indicates is that the symmetrical structure applied 

to physics is organized in such a way that both these interpretations of the 

dualling process apply simultaneously. In effect, this hidden balancing act 

also operates in yet other, more subtle ways because the virial relation 

between potential and kinetic energies is specifically one of doubling only 

when the force laws which apply are those characteristic of 3-dimensional 

space; and the action and reaction mechanisms which produce the doubled 

value for potential energy rely on applying vectorial (or dimensional) 

considerations to the kinetic energy term. 

That the doubling mechanism also applies in purely mathematical, as 

well as in physical, contexts is evident from the topological explanation of 

the Aharanov-Bohm effect, though the physical and mathematical 

applications must ultimately have the same origin. Square-rooting and 

halving have an intimate relationship, which is manifested physically in the 

relation between vector spin terms of bosons and fermions and their 

respective uses of double or single nilpotent operators, in addition to the 

halving approximation used to find the kinetic energy term in the bionomial 
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expansion for relativistic mass. This relationship is determined entirely by 

the fact that 3-D Pythagorean addition is a dualistic process, with a 

numerical doubling arising from noncommutativity, and this applies to both 

the vector operators used for space and momentum, and the quaternion 

operators used in the Dirac nilpotent. 

There are also other possible mathematical connections. It is tempting, 

for instance, to believe that the uniqueness of the value ½ as the real part of 

the zero-solutions of the Riemann zeta function has a significance which is 

physical as well as mathematical, and that, as Hilbert originally 

conjectured, the solutions represent the eigenvalues and energy levels of an 

Hermitian operator, which is the Hamiltonian of a quantum mechanical 

system. It is conceivable that the ½ is related to the zero-point energy term 

of a series of fermionic harmonic oscillators. It is certainly true that, 

solving the Dirac nilpotent equation for any spherically-symmetric 

potential other than a linear or Coulomb one (i.e. under harmonic oscillator 

conditions) requires a Coulomb or phase term with numerical coefficient ½, 

which is of the opposite complexity to the rest of the potential, and which 

can be associated with the zero-point energy or (equivalently) the random 

directionality of the fermion spin. There may also be some physical 

significance in the fact that integers, like the fundamental parameters, only 

add directly to produce other integers or in the form of squares to produce 

squares of integers, but do so in an infinite progression. Both of these 

mathematical results suggest the possibility of further fundamental 

significance in the factor 2. 

 

QUANTUM PHYSICS AND THE CLASSICAL TRANSITION 

 

The definition of the Dirac nilpotent suggests that this is the most 

efficient way or parameterizing nature while ensuring its total 

‘nothingness’. It may be possible to relate this to the aims of topos theory, 

in using a nilpotent Pythagorean structure to create a ‘parameter space’ 

which contains within itself dynamical and other physical possibilities. The 

uniqueness of the individual Dirac nilpotents, together with their necessary 

entanglement with each other and their infinite interaction with the vacuum, 

suggest that this is a real number space, with the numbers countable in the 

Robinson or Löwenheim-Skolem sense (see Appendix III). Through the 

Dirac equation, the nilpotents are then interpreted simultaneously in terms 

of conservation (the eigenvalue) and nonconservation (the operator). 

Quantum physics thus becomes a natural consequence of the fundamental 

meaning of conservation and nonconservation, and its separation from the 

physics of measurement (classical physics) becomes obvious. It is still 
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necessary, however, to make sense of the classical transition, and also of 

the relationship between gravity and the other forces. Considerations of 

such ideas may also suggest the origin of the classical laws of 

thermodynamics. 

Measurement processes are discrete, and involve discrete sources (or 

charges). They rely on the SU(3)  SU(2)  U(1) symmetries which apply 

to these sources (and whose direct expressions are ‘interactions’, equivalent 

in principle to the action of classical field terms) producing restrictions on 

the freedom of the individual wavefunctions to contain infinitely possible 

variations in space and time coordinates. 

A hypothetically isolated system (e.g. a hydrogen atom not interacting 

with other hydrogen atoms) must be purely quantum. Once we have any 

classical element or interaction the system is no longer isolated. This is how 

we make a measurement. We can’t make classical-type observations on an 

isolated system, otherwise it wouldn’t be isolated. An isolated system 

conserves E-p-m within the system, linking it with the total k, i, j charge 

values, whether 0 or unit, positive or negative. This system must remain 

coherent – with angular momentum operators aligned, so that addition is 

effectively scalar, like that of the charge units. If the system interacts with 

an external system, then it can no longer be defined in an isolated way: the 

connection between the conservation laws for charge (k, i, j) and angular 

momentum (E-p-m) is broken. If the system is not isolated, then energy is 

not conserved within it, but some is lost to the ‘rest of the universe’ with 

which it interacts. Hence, we need the second law of thermodynamics, and, 

in fact, the first law (where the energy balance is only maintained globally 

by incorporating the ‘lost’ energy into the equation). The connection 

between the second law of thermodynamics and the direction of time is 

now apparent. To make a measurement requires a semi-classical situation 

with a non-isolated system; as soon as we make a measurement, we lose 

energy from the system to the ‘rest of the universe’, so increasing the 

‘entropy’. The sequence of events behaves as an irreversible sequence 

because time itself is irreversible, because of its continuity, and a sequence 

of event ‘measurements’ must follow the same sequence; but this for any 

known pair of events will always require an increase in entropy. 

 

CONCLUSION 

 

Physics, mathematics and philosophy emerge together out of the basic 

idea of duality, though the concept applied is more fundamental than this 

name, with its connotations of a necessary discreteness, would imply. 

Mathematics is not something ‘applied’ to physics for ‘convenience’. It is, 
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in fact, extremely inconvenient, as the mathematical laws of physics are 

general differential equations, which have to be reinterpreted (‘solved’, 

using different boundary conditions) every time a measurement is taken. 

Observation and theory, in physics, necessarily use incompatible types of 

mathematics because observation depends only on one member of the 

parameter group (space), while theory sets up the properties of the other 

members in opposition. So, mathematics is required only because it is a 

fundamental component of physics, and the structure of mathematics itself 

seems to suggest physical boundaries to the type of ideas which can be 

made mathematically useful (though obviously not in the form of a purely 

one-to-one correspondence). In fact, physics can become a kind of test of 

the ultimate value of mathematical structures at the fundamental level. 

For example, physics appears to insist on the fact that all discrete 

quantities must be dimensional. This would not be required of a 

mathematical theory based, as most are, on the primacy of the integer 

series. However, if we begin mathematics with the integer series, then we 

have major problems in accommodating the reals – there is no natural 

progression – and, if we assume, like most axiomatists, that the most 

fundamental proposition in mathematics is 1 + 1 = 2, we will come up 

against the problems that Gödel identified with axiomatic theories or 

‘rigidly logical systems’ which are intrinsically incomplete. 

However, in physical terms, we may suppose that the integer series is 

not primary and that arithmetic, although the most psychologically familiar, 

is not the most fundamental branch of mathematics; and, further, that, the 

moment we assume that the number 1 (or even number at all) is the most 

basic concept in mathematics (or indeed in human thought), we have at the 

same time brought in a whole package of information that we will never be 

able to establish from first principles. Physics, in fact, tells us that integers 

and discrete numbering are not primary – they are associated with 

dimensionality – and dimensionality only has a meaning in the context of 

complexity. The integers are really a codification of a multiplicity of prior 

stages in mathematical evolution. To begin with them will necessarily 

produce an incompleteness in our logical procedures, with key steps 

appearing merely as assumptions in a circular argument. But, if we begin at 

the true primary stage, with a zero end product at every stage, we 

effectively remove the incompleteness in our axiomatization. We also reach 

a primary stage in which even the word ‘dual’ loses its meaning, although 

its convenience for the later stages makes it worth retaining if separated 

from its numerical associations. 

The very applicability of the concept of ‘duality’ to the process of 

returning from ‘something’ to ‘nothing’ implies that the actual processes of 
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counting and generating numbers are created, along, with ‘addition’, 

‘squaring’, and other arithmetical procedures, at the same time as the 

categories of conjugation, complexification, and dimensionalization are 

separated from their dualistic counterparts. Defining the integers as an 

ordinal set within a much more fundamental process allows us to create 

new mathematical processes in which this ordinal set is applied in other 

ways, and so we can create types of mathematics where the relation to 

physical categories is less direct, but the ultimate ‘physical’ or ‘dual’ origin 

will remain. 

From a purely physical point of view, the Dirac nilpotent would appear 

to be the perfect way of producing something from nothing; its structure 

also effectively incorporates or generates all the discrete and continuous 

groups of interest in fundamental physics, from C2 to E8 [Rowlands, 

Cullerne and Koberlein, 2001]; while the infinite imaging of the fermion 

state in the vacuum and the infinite entanglement of all nilpotent fermion 

states extends the dualling to infinity, as required. At the other end of the 

scale, the author, and collaborators, have shown, in many previous papers, 

how this concept applies to the structure of fundamental particles and the 

four fundamental physical interactions. 

 

Appendix I Quaternions and multivariate vectors 

 

Quaternions follow the multiplication rules: 

                                                i2 = j2 = k2 = −1 

                                                   ij = −ji = k 

                                                   jk = −kj = i 

                                                   ki = −ik = j  

         ijk = −1 . 

If the quaternions are complexified we have: 

                                              (ii)2 = (ij)2 = (ik)2 = 1 

                                              (ii)(ij) = −(ij)(ii) = i(ik) 

         (ij)(ik) = −(ik)(ij) = i(ii) 

         (ik)(ii) = −(ii)(ik) = i(ij) 

             (ii)(ij)(ik) = i . 

Multivariate vectors follow exactly the same multiplication rules: 

                                                  i2 = j2 = k2 = 1 

                                                    ij = −ji = ik 

                                                    jk = −kj = ii 

                                                    ki = −ik = ij  

            ijk = i . 
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In effect, this means defining a ‘full product’ for two vectors a and b of the 

form 

                                                  ab = a.b + i a × b . 

 

The rules for multivariate unit vectors are also exactly identical to those for 

Pauli matrices, and, through the additional cross term, immediately 

generate the concept of fermion spin. 

 

Appendix II: Properties and antiproperties of space, time, mass and 

charge 

 

The inextricable combination of properties and antiproperties means 

that neither an epistemological conception of ‘reality’ (we create it by our 

perception) nor an ontological one (it is ‘out there’ waiting for us to 

discover it) is meaningful. The division between epistemology and 

ontology can be based on the opposition of parameters susceptible or not 

susceptible to measurement (space versus the rest), or, alternatively, on the 

opposition nonconserved and conserved parameters (space and time versus 

mass and charge). In either case, the complete description requires both – 

‘nothing’ is neither epistemological nor ontological. The properties and 

antiproperties also incorporate all the fundamental types of ‘mathematical’ 

number: positive, negative, integer, rational, algebraic, complex, 

transcendental, denumerable real, nondenumerable real, fixed and variable. 

They also include a concept of absolute ‘uniqueness’, which has not yet 

found its way into conventional mathematics, unless in the properties of the 

Dirac nilpotent algebra. 

 

(a) Nonconserved / conserved 

 

Physics structures itself by defining systems in which conserved 

quantities remain fixed while nonconserved quantities vary absolutely. 

Differential equations show the variation of space and time coordinates 

while retaining the fixed values of mass and charge, and the quantities 

which depend upon them: energy. momentum and angular momentum. 

Both nonconservation and conservation are absolute. The Dirac equation 

for a free fermion expresses this fact in its most convenient form. Quantum 

mechanics, in this form, is more explicable than classical mechanics, in that 

it fully expresses the nonconservation properties of space and time. 

Conservation applies to all three types of charge. Lepton and baryon 

conservation are obvious manifestations, respectively, of pure weak and 

strong charge conservation, as is the non-decay of the proton. Conservation 
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laws of mass and charge is also local, rather than global. Classically, each 

element of mass or charge has a permanent identity. Nonconservation is 

exactly opposite: space and time elements have no identity whatsoever. 

Hence, space and time have translation symmetry, with their elements 

specifically stated to be indistinguishable in physical equations. Three-

dimensional space also has rotation symmetry; that is no identity for spatial 

directions or unique set of dimensions. The contrasting properties of mass 

and charge are ‘translation asymmetry’ (conservation of quantity), and 

‘rotation asymmetry’ (electromagnetic, weak and strong charges 

independently conserved). Charge, unlike space, is conserved in both 

quantity and ‘direction’ (i.e. type). Weak, strong and electric charges are 

not interconvertible. The axes are fixed, along with the units. 

The translation and rotation symmetries, of course, are identified by 

Noether’s theorem with conserved quantities. Time and space translation 

symmetry are identified respectively with energy (E) and momentum (p) 

conservation, while space rotation symmetry becomes identical to the 

conservation of angular momentum (J). These three conservation laws can 

be identified further with the conservation laws of mass, value of charge 

and type of charge, and, in fact, the additional conserved quantities (E, p, J) 

can be seen as being ‘created’ at the same time as the application of the 

quaternion operators associated with the conserved w, s, e charges to the 

parameters time, space and mass produces the Dirac state. The conservation 

of charge type (w, s, e), alternatively rotation asymmetry or charge 

independence, manifests itself in the mutual independence of the three 

different aspects of angular momentum conservation (handedness, 

direction, and magnitude). 

Previous work by the author and colleagues has shown that 

fundamental particles may be defined in terms of their w, s, e charges and 

rest mass, with the last determined ultimately from the charge structure. 

The conventional definition of a fundamental particle assumes an 

irreducible representation of the Poincaré group, or the group of space and 

time translations and rotations compatible with special relativistic 

invariance. Here, it can be seen that such translations and rotations are 

essentially identical to the conservation properties related to charge and rest 

mass which define a particle in the present theory. 

Gauge invariance is a further demonstration of the absolute 

nonconservation of space and time, and, according to the Yang-Mills 

principle, is as local as all the principles of conservation. A system which is 

conservative in relation to mass, charge, energy, momentum or angular 

momentum, will remain so under arbitrary changes of the coordinates 

representing the nonconserved quantities, space and time. 



 42 

(b) Real / imaginary 

 

Pythagorean addition, or addition through squared values, is important 

to all the fundamental physical quantities. This is a consequence of their 

origins in quaternion and 4-vector representations. 4-vectors, with three real 

parts and one imaginary, are a familiar representation of Minkowski space-

time. If the vector (or real) part is multivariate, then spin is automatically 

included. The three components of charge (say, ie, js, kw) can be 

considered as the ‘dimensions’ of a single charge parameter, with their 

squared values used in the calculation of forces added, in the same way as 

the three parts of space, by Pythagorean addition: 

 

  space-time  ix jy  kz  it 

  mass-charge  ie js  kw m  

 

The opposing real and imaginary natures of space and time explain simply 

why identical masses attract, while identical charges (of any kind) repel, the 

coupling strength producing respective positive and negative values. 

Real numbers can be privileged according to sign; imaginary ones 

cannot, and there are always simultaneous and equal status + and – 

solutions to consider. Thus, while real mass can be made unipolar (to 

ensure that it remains a continuum), imaginary charge always produces 

solutions of two signs, and ‘antifermions’ and ‘antibosons’ (with opposite 

signs of electromagnetic, strong and weak charge) have the same status as 

‘fermions’ and ‘bosons’. For the same reason, imaginary time has two 

possible signs, of equal status, in physical equations, though, as a 

continuous quantity, it has only one physical direction, and cannot be 

reversed. 

Charges, as imaginary quantities, are only accessible through their 

squared values in interactions; mass, as a real quantity, is accessible in 

terms of its unsquared value (as inertia) as well as through its squared value 

(as gravitation). Time, as an imaginary quantity, is only accessible 

physically through its squared value (in acceleration), while space, like 

mass, is accessible through both its squared and unsquared values. Time 

‘measurement’ always requires acceleration (because uniform velocity is 

imaginary), while space measurement is always direct. Time also is always 

the independent variable in physical equations, because we have no direct 

control over it, while space is the dependent variable. 
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(c) Countable / noncountable 

 

Noncountable or continuous time and mass-energy have no origin. 

Continuous energy (vacuum) requires an infinite universe. Continuous time 

requires one without beginning or end. Continuous quantities cannot be 

reversed, because they have no origin. Mass becomes unipolar (with a 

single sign) while time is unidirectional. However, time as an imaginary 

quantities, has two mathematical solutions in equations. Hence, there are 

two directions of time symmetry, while there is only one direction of 

physical time. The unipolarity of mass is the reason why we have a CPT, 

rather than an MCPT, theorem, with C standing for charge conjugation, P 

for space reflection and T for time reversal, each of which has two 

mathematical sign options. 

Only discrete quantities can be multidimensional, because 

multidimensionality requires origins, even if they aren’t fixed (as in the 

case of space). Also, the discreteness of a quantity like space, with unfixed 

origins, is only possible through dimensionality. What we call 

‘measurement’ in space requires discontinuity in both quantity and 

direction, and includes both reversals and changes in orientation. This is 

why what we call ‘measurement’ takes place only through space. ‘Time’-

measuring devices all rely on some kind of repetition of a spatial interval. 

Special conditions, relying on spatial reversibility and dimensionality, have 

to be used to set up such measurements, although anything which can be 

perceived at all can be used to measure space, at any time. 

There are two definitions of real numbers in mathematics. In 

Robinson’s non-standard analysis, Skolem’s non-standard arithmetic, and 

non-Archimedean geometry, the reals are denumerable. The Löwenheim-

Skolem theorem is significant here, in requiring any consistent finite, 

formal theory to have a denumerable model, with the elements of its 

domain in a one-to-one correspondence with the positive integers. In the 

Cantorian definition, which is related to the standard versions of analysis 

and geometry, they are a non-denumerable continuum. Essentially, the first 

definition reflects the properties of space, while the second accords with 

the properties of time (or mass). Both systems yield identical results, 

because differentiation is a property linked to nonconservation, and not 

concerned, in principle, with the difference between absolute continuity 

and indefinite divisibility. Zeno’s paradoxes are solved only by assuming a 

divisible (or digital) space and a non-divisible (or analogue) time. The 

solution by limits can only be used if we adopt the time-like, or standard, 

version of differentiability. 
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Mathematicians have been unable to decide whether mathematics is 

ultimately continuous or divisible. This is because both are physical 

options. The indefinite divisibility of space, though sometimes wrongly 

termed ‘continuity’, is a different attribute from the absolute continuity of 

time. Space’s indefinite elasticity, its ‘continual’ recountability, or 

unending divisibility, are ways of expressing its nonconserved nature, the 

nonfixed nature of its units, but infinite divisibility is, mathematically, the 

very antithesis of absolute continuity, and the whole process of 

measurement would be impossible if space, unlike time, were not divisible 

in this way. Continuity, again, is not related to differentiability – the 

confusion here arises from the fact that one of the differentiable quantities, 

time, is continuous, and that the continuity of time is a significant 

contributor to our psychological perception of states of change. 

Differentiability is, again, a manifestation of nonconservation, a wholly 

separate physical category, and is equally valid in both discrete and 

continuous, and in classical and quantum contexts, though it is obviously 

not valid where the discreteness is fixed (which is where much of our 

psychologically-based notion of discreteness comes from). 

Wave-particle duality and the opposing Schrödinger and Heisenberg 

versions of quantum mechanics are the result of adopting predominantly 

continuous or discrete options for physical quantities. Neither is actually 

physically possible, and each incorporates the alternative in the process of 

‘measurement’. The non-quantum-field version of the Dirac theory partially 

overcomes this by including terms equivalent to those in the dual group, 

with aspects of the real and imaginary nature of space, time, mass and 

charge reversed. The nilpotent or quantum field version of the Dirac theory, 

however, incorporates both discrete and continuous options as duals within 

its mathematical structure, and no longer requires explicit use of the dual 

group. 

Hamilton was correct, in 1843, in seeing quaternions as being 

responsible for the three-dimensionality of space, as quaternions introduce 

the concept of three-dimensionality which vectors subsequently adopt. 

They also occur one stage earlier than vectors in the evolution of physical 

concepts via duality. It is significant that the quantized parameters (E, p, m, 

and, collectively, J) emerge from the application of the charge quaternions 

to the originally non-quantized space, time and mass. Although 

quantization may thus appear to be equivalent to converting these three 

parameters into discrete forms, the discrete versions should be seen rather 

as composites, with which the discrete charge structures are inextricably 

linked. 
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(d) The construction of physical laws 

 

The parameter group leads naturally to laws of physics, based on the 

explicit specification of what is conserved and what is nonconserved. The 

construction of these laws relies on the fact that every statement about 

conservation is simultaneously a statement about nonconservation. To 

relate the conserved and nonconserved aspects, we use the scaling relations 

between the parameters, and their dual inverses, which are established at 

the moment that we compress the eight units of the independent parameters 

into the five of the combined Dirac algebra, and create composite 

parameters with characteristic aspects of each. The most significant of these 

are the ones which relate mass and charge, respectively, to time and space, 

and which can also be shown to be conserved parameters: namely, energy, 

linear momentum and angular momentum. These are quantities of the same 

mathematical form as time and space, which are conserved in exactly the 

same way as those quantities are nonconserved, and form conjugate pairs 

with them for exchanging statements about conservation into statements 

about nonconservation and vice versa. Both classical and quantum laws can 

now be constructed in terms of these conjugate pairs (e.g. via Poisson 

brackets). 

Energy is a pseudoscalar and is conserved in quantity and individual 

element (i.e. is translation asymmetric) in precisely the same way as the 

pseudoscalar parameter time is not conserved in quantity and individual 

element (i.e. is translation symmetric). It may be regarded as the link 

between time and the real scalar quantity mass (the gravitational source), as 

the conservation of energy is directly linked to the conservation of mass. 

Linear and angular momentum are, respectively, vector and pseudovector, 

and are conserved in quantity and individual element (i.e. are translation 

and rotation asymmetric) in precisely the same way that the vector 

parameter space is not conserved in quantity and individual element (i.e. is 

translation and rotation symmetric). They may be regarded as the respective 

links between space and the quantitative values and the quaternion 

operators applied to the different charge types. 

Energy and momentum are regarded as a pure 4-vector in special 

relativity, but, in a quantum system, this is not strictly true, because 

quantum (Dirac) energy and momentum terms are only fully represented 

mathematically when each has a (different) quaternion operator applied to 

its respective pseudoscalar or vector. When taking the invariant scalar 

product, of course, these operators disappear, but their significance 

becomes apparent when we introduce a third term, with yet another 

quaternion operator (rest mass) to convert them into a nilpotent. A pure 4-
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vector could not be made into a nilpotent in this way. If we take the Dirac 

differential operator (), we can see that this, also, is not a pure 4-vector, 

and the same must apply, in general, to relativistic time and space, whether 

the system is quantum or classical. The nilpotent is completed with a third 

term, which occupies the same position as rest mass does in completing the 

differential operator nilpotent. This term is a real scalar, like rest mass, and 

its squared value must exactly cancel the scalar product of the time and 

space components. The fact that it can never be negative means that only 

retarded solutions are possible for the space-time combination. It also 

means that, numerically, this new term (the ‘proper time’, ) is equivalent 

to the time value with a zero space component. ‘Proper time’, however, is, 

strictly, a rest mass-related, rather than time-related concept. Its validity in 

both classical and quantum contexts is an indication that the link between 

these two domains is essentially through the scalar additive nature of the 

rest mass or ‘inertia’ of the component systems. 

 

Appendix III: Algebraic representations of the parameter group 

 

A simple algebraic representation of the parameter group can be 

accomplished by representing the properties of space (real, nonconserved, 

divisible) by, say, x, y, z, with the respective antiproperties (imaginary, 

conserved, indivisible) represented by –x, –y, –z. The group now becomes: 

 space x y z 

 time –x  y –z 

 mass x –y –z 

 charge –x –y z 

With group multiplication rules of the form: 

             x * x = –x * –x = x 

            x * –x = –x * x = –x 

             x * y = x * –y = 0 

and similarly for y and z, we can establish the standard D2 group 

multiplication table with space as identity element, and each element its 

own inverse (the duality of space-time elements and their inverses is, 

interestingly, a feature of string theory). However, we could just as easily 

have chosen mass as the identity element by representing the properties and 

antiproperties: 

 space x –y –z 

 time –x –y z 

 mass x y z 

 charge –x y –z 
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and the same applies to time and charge. The ‘multiplication’ rule here only 

concerns the signs, but the creation of a Dirac nilpotent incorporating both 

the space-time 4-vector and the mass-charge quaternion suggests that there 

must also be a direct multiplication rule between the units of the parameters 

and those of their inverses, which is exactly what we need to require the 

existence of the fundamental constants G, h and c. 
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