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Abstract. Analysis of a numerical factor 2 or ½, which occurs in many physics equations, 

suggests that, in all significant examples, classical, relativistic and quantum, it has a common 

origin, a principle of duality, in which both physics and mathematics structure themselves by 

trying to avoid creating ‘something’ from nothing. 

 

1 Kinematics and the virial theorem 

 

There is a purely geometric factor 2 in the formula for the area of a triangle, 

½ × length of base × perpendicular height. This can be applied to kinematics if 

we represent a motion under uniform acceleration (a) by a straight-line graph of 

velocity (v) against time (t). The area under the graph now becomes the distance 

travelled, ½ vt. If the motion had been under uniform velocity, the distance 

would have been represented as the area of a rectangle, vt. Here, the factor 2, 

distinguishes between steady conditions and steadily changing conditions. We 

can develop the idea further to produce the well-known kinematic equations for 

uniform acceleration, starting from initial velocity u, such as v2 = u2 + 2as. A 

body of mass m, acted on by a uniform force F = ma, then acquires kinetic 

energy ½ mv2 or p2 / 2m, if we express it in terms of momentum, p = mv. It is 

easy, of course, to show that the last two formulae apply even when the 

acceleration is nonuniform. 

The kinetic energy formula applies when a system is undergoing change. A 

classic example is that of a body of mass m escaping  from a gravitational field, 

where 

                      
mv2

2
 = 

GMm

r
 . 

But if a system is in steady-state, as in a classical circular gravitational orbit, we 

use a potential energy relation, in which the potential energy has twice the value 

of kinetic: 

          mv2 = 
GMm

r
 . 

Strictly, this is true only for systems involving constant or inverse-square-law 

forces, for the more general virial theorem, relates the time-averaged kinetic and 

potential energies, T
−

 and V
−

, in a conservative system, governed by forces 

proportional to r–n, by the formula: 

                                T
−

 = 
(1 – n)

2
 V
−

  . 
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This brings in another aspect of the factor 2, for constant and inverse-square-law 

forces are characteristic of a universe structured within a three-dimensional 

Euclidean space, which brings us back to the geometric origin of the factor 2 in 

the formulae for the area of a triangle. 

One way of looking at the kinetic and potential energy relations is to say 

that the first is concerned only with the action side of Newton’s third law, while 

the second concerns both action and reaction. In fact, an old proof of Newton’s 

of the mv2 / r law for centripetal force, and thus of the formula mv2 for orbital 

potential energy, was based on a doubling of the momentum through action and 

reaction from an imagined infinite sided polygon defining the orbit of the 

motion. The same momentum doubling by reflection occurs in a more directly 

physical context in the elementary derivation of the pressure-density relation for 

an ideal gas in steady state, P =  c
−2 / 3, which has the same ‘potential energy’ 

format as mv2, though divided randomly between three dimensions. To find the 

average kinetic energy of the gas molecules, we have to make an explicit use of 

the virial theorem for conditions equivalent to a constant force. 

What is surprising, however, is that photons, which, unlike material 

particles, are relativistic objects, behave in exactly the same way in a ‘photon 

gas’, producing a radiation pressure of the form P =  c2 / 3, with the relativistic 

energy E = mc2 behaving exactly like a classical potential energy term, and with 

no mysterious ‘relativistic factor’ at work. We can consider the photons as being 

reflected off the walls of the container in the exactly the same way as the 

molecules of materials although the real process obviously also involves 

absorption and re-emission. 

 

2 Relativity 

 

The doubling of the energy term in E = mc2, by comparison with classical 

potential energy, is sometimes described as ‘relativistic’, but relativistic factors 

tend to be of the form  = (1 – v2 / c2)–1/2, suggesting some gradual change when 

v → c, and abrupt transition involving a discrete integer. E = mc2, used for 

material particles with rest mass m, is a relativistic equation because it 

incorporates the  factor in the m term, but E = mc2 is simply a requirement 

needed by Einstein to reconcile special relativity with classical energy-

conservation laws, and, since it is determined solely by an integration constant, 

it cannot be derived directly from relativity itself. In the case of photons, which 

have no rest mass and no kinematics, there is no distinction between a 

‘relativistic’ approach and one based on classical potential energy, and it is 

perfectly possible to do classical calculations for photons, entirely independent 

of any concept of relativity. 

In addition, even though free photons have no kinematics, it is also 

perfectly possible to treat photons acting under the constraint of certain forces as 
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though they have. One example occurs in a plasma, where they acquire an 

effective ‘rest mass’. Another occurs in a gravitational field, where the light 

‘slows down’, and behaves exactly as if it had kinetic energy in the field. This is 

why it is possible to use the standard Newtonian escape velocity equation 

                               
mv2

2
  = 

GMm

r
 

 

to derive the Schwarzschild limit for a black hole, as was done as early as the 

eighteenth century, by assuming v → c, with no transition to a ‘relativistic’ 

value. 

Less obviously, but equally correctly, we can derive the full double 

gravitational bending of light, using the kinetic equation, 

 

                            
mc2

2
 = 

GMm (e – 1)

r
 , 

 

for an orbit which may be assumed to be hyperbolic with eccentricity e. We do 

not use the potential energy equation 

                           mc2 = 
GMm (e – 1)

r
 , 

 

which requires steady-state conditions, which do not apply when an orbit is in 

the process of creation, as here. From the potential energy equation, with 1 « e, 

the full angle deflection (in and out of the gravitational field) is easily derived as 

 

                                   
2

e
 = 

2GM

c2r
 . 

 

Contrary to popular opinion, Soldner, who attempted a calculation in 1801, did, 

in fact, use the correct kinetic energy, and not the incorrect potential energy 

equation, and only obtained an incorrect final result because he integrated over 

the single, rather than double, angle. Soldner rightly saw the procedure as being 

a kind of reverse analogy of Laplace’s black hole calculation, though using a 

hyperbolic rather than a circular orbit, the significant fact being that the photon’s 

speed outside the gravitational field is not determined by it. 

Of course, the fact that we can do a calculation of the full deflection using a 

classical argument doesn’t mean that we can’t use a special or general 

relativistic argument to derive the effect. The work of many authors has shown 

that we can. What it does mean is that the cause of the effect itself is 

independent of the particular version of physics we use to calculate it. 

Something more profound is involved. This seems to be the fact that, in every 

case where a ‘relativistic’ correction (either special or general) seems to ‘cause’ 

the doubling of a physical effect, the relativistic aspect, like classical kinetic 

energy, is providing a way of incorporating the effect of changing conditions. 
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(And the same argument applies also to the calculation of planetary perihelion 

precession.) 

It isn’t necessarily important what particular physical phenomena we invoke 

to support the calculation, and the many disagreements over the ‘cause’ of the 

double deflection bear witness to this. Authors have generally agreed that there 

are two separate physical components involved, but not on what they are. In 

principle, it would seem that the potential energy equation is responsible for 

gravitational redshift, or time dilation, which gives half the effect, while 

relativity adds the corresponding length contraction. Now, this may be 

interpreted as redshift being ‘Newtonian’ while the length-contraction or ‘space-

warping’ is relativistic, but it might be that the length contraction is Newtonian 

while the redshift is relativistic. It has also been argued that the ‘Newtonian’ 

effect has to be added to the Einstein equivalence principle calculation of 1911 

(which again gives half the effect), but a counter-argument suggests that these 

two effects are the same, and need supplementing with a ‘true’ relativistic effect, 

like the Thomas precession. Amazingly, all of these arguments are correct! They 

are by no means mutually exclusive. In reality, it depends on the choice of 

classical energy equation. If we use the potential energy equation where the 

kinetic energy equation is appropriate, then we can find correct physical reasons 

for almost any additional term which doubles the effect predicted. 

 

3 Spin and the anomalous magnetic moment 

 

Almost exactly the same reasoning can be shown to apply to the anomalous 

magnetic moment or, equivalently, the gyromagnetic ratio, of a Bohr electron 

acquiring energy in a magnetic field. According to ‘classical’ reasoning, we are 

told, the energy acquired by an electron changing its angular frequency from 0 

to  in a magnetic field B will be of the form 

 

                m (2 – 0
2) = e0rB  , 

 

with a corresponding a angular frequency change  = eB / 2mr. But a 

relativistic effect (the Thomas precession, again!) replaces the classical e0rB 

by 2e0rB, doubling the value of . All we need to do, however, to obtain the 

correct value of  is to realise that we must use the kinetic energy equation 

when we have changing conditions, as, for example, at the instant we ‘switch 

on’ the field. Then, we automatically write 

              
1

2
 m(2 – 0

2) = e0rB  , 

 

which is nothing more than a version of the kinematic equation v2 – u2 = 2as . 

The Thomas precession is only needed as a ‘relativistic’ correction if we begin 

with the potential energy equation applicable to a steady state. 
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In showing that the gyromagnetic ratio of a Bohr electron is not truly 

‘anomalous’ or relativistic in origin, but perfectly capable of a classical 

explanation, we are also showing that the origin of the factor 2 in the electron 

spin term is not of a fundamentally quantum origin either. Traditionally, of 

course, electron spin is derived from the relativistic Dirac equation by 

consideration of the commutator 

 

                                        [̂, H] = [̂, i0.p + 0m] . 

 

Purely formal reasoning reduces this to 20   p, which, in the multivariate 

vector terminology used by the author (equivalent to Pauli matrices), becomes 

2ij 1  p. The factor 2 here emerges directly from the anticommuting properties 

of the vector operators  and p, ultimately leading to 

 

                                                    [L + ̂ / 2, H] = 0 . 

 

with the total angular momentum (L + ̂ / 2), including the spin term ̂ / 2. 

Originally, with its automatic derivation from the Dirac equation, this term 

was thought to be related to the relativistic nature of the Dirac equation. 

However, the same result (or, more specifically, in its manifestation in the 

presence of a magnetic field) can be derived from the nonrelativistic 

Schrödinger equation, if we use a multivariate momentum operator, as we do 

automatically in the Dirac equation. Significantly for our purposes, the standard 

derivation of the Schrödinger equation proceeds by quantizing the classical 

expression for kinetic energy: 

 

                 T = (E − V)  = 
p2

2m
 , 

 

using the operator substitions E = i  / t and p = (–i + eA), in the presence of 

a magnetic field determined by vector potential A. Normally, the right-hand side 

of this equation is interpreted as −2 / 2m, using the scalar product (–i + 

eA).(–i + eA). However, various authors (e.g. Gough1) have shown that, using 

a multivariate operator for p = –i + eA, we obtain: 

 

              2mE = (–i + eA) (–i + eA)  

 

which leads ultimately to 

 

          2mE = (–i + eA).(–i + eA)  + 2m .B , 

 

which we recognize as the form of the Schrödinger equation in a magnetic field, 

with a spin state supplied by the ad hoc addition of Pauli matrices. It becomes 
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an automatic component of our equation because we define a full product 

between multivariate vectors (or, equivalently, Pauli matrices or complex 

quaternions) a and b of the form ab = a.b + i a × b.  

If real vectors, such as those representing space and momentum, are 

intrinsically multivariate, then a spin term will automatically result from taking 

the full product, and the ½-integral value of fermionic spin (incorporated here in 

the 2m .B term) becomes a consequence of the vectors’ anticommuting 

properties. Relativity doesn’t come into it; it is a vector, not a 4-vector effect, as 

we can also see from the well-known fact that the 4 rotation involved in spin is 

purely a property of the rotation group. At the same time, the ½ in the 

Schrödinger equation itself clearly comes from the equation’s initial derivation 

from the expression for classical kinetic energy. 

A similar situation occurs when the Schrödinger equation is solved for the 

case of the quantum harmonic oscillator, with a varying potential energy term, 

½ m2x2, taken directly from the classical kinetic energy term ½ mv2, added to 

the Hamiltonian. The ½ in this expression then leads by direct derivation to the 

½ in the expression for the ground state or ‘zero-point’ energy of the system, 

 

                     E0 = 
h̄
2

  . 

 

This zero-point energy term can be related directly to the h̄  / 2 in the 

Heisenberg uncertainty relation, but the formal derivation of this relation also 

shows that the factor ½ is generated by anticommutativity in the same way as it 

is for electron spin. We assume a state represented by a state vector  which is 

an eigenvector of the operator P. Then, if Q is an operator which anticommutes 

with P, we obtain 

 

                                     (p) (q)  (1/2) [P,Q]  h̄  / 2 

 

where the noncommutation of the p operator introduces the factor 2. 

 

4 Fermions and bosons 

 

The factor 2 in spin states establishes the distinction between bosons and 

fermions, with bosons occupying integral spin states and fermions half-integral 

ones. Ultimately, this factor can be shown to originate in the virial relation 

between kinetic and potential energies. To do this, it is most convenient to use 

the nilpotent formulation of the Dirac equation for fermions, derived in earlier 

papers.2 In this procedure, we devise an algebra combining quaternions (i, j, k, 

1) and multivariate 4-vectors (i, i, j, k) to represent the five gamma matrices (o 

= ik; 1 = ii; 2 = ji; 3 = ki; 5 = ij). We then take the classical relativistic 

energy-momentum conservation equation: 
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           E2 – p2c2 – mo
2c4 = 0  ,     

 

where mo is rest mass, and factorize using our quaternion-multivariate-4-vector 

algebra to give: 

         ( kE  ii p + ij mo) ( kE  ii p + ij mo) = 0 , 

 

before quantizing to obtain 

        








 ik


t
  i + ijmo    =  0 , 

where 

    = ( kE  ii p + ij mo) e
-i(Et - p.r)   

 

for a free fermion. 

It will be convenient here to refer to the expression ( kE  ii p + ij mo) as 

the ‘quaternion state vector’ (QSV) for the fermion, and we may consider it 

formally as a row or column vector, with components (kE + ii p + ij mo); (kE − 

ii p + ij mo); (−kE + ii p + ij mo); and (−kE − ii p + ij mo), which may be 

considered as the four creation / annihilation operators for fermion / 

antifermion, spin up / spin down. An antifermion QSV with the same state of 

spin would reverse the signs of E in all the components, while a spin reversal for 

either fermion or antifermion would reverse the signs of p. A spin 1 boson QSV 

then becomes the sum of the terms 

 

 (kE + ii p + ij mo) (−kE + ii p + ij mo) 

 (kE − ii p + ij mo) (−kE − ii p + ij mo)  

 (−kE + ii p + ij mo) (kE + ii p + ij mo)  

 (−kE − ii p + ij mo) (kE − ii p + ij mo) , 

 

with the components of the fermion state arranged in a row vector (represented, 

for convenience, as a column), and the components of the antifermion state in a 

column vector. A spin 0 boson state is obtained by reversing the signs of p in 

the second column. From its original derivation, we can see that the fermion 

QSV is a nilpotent or square root of 0, while the boson wavefunction is a 

nonzero scalar, formed as a product of two nilpotents (each not nilpotent to the 

other). Significantly, the Dirac equation requires that a nilpotent QSV is 

matched exactly by the eigenvalue produced by the differential operator on the 

functional term (e-i(Et - p.r) for a free particle). 

While the Dirac and Schrödinger equations, which are ultimately concerned 

with kinetic energy states, produce fermions with half-integral spins, the Klein-

Gordon equation, which applies to bosons, is a potential energy equation, based 

on E = mc2, with m the ‘relativistic’, rather than rest mass mo, and bosons derive 

their integral spin values from the fact that the energy term in this equation 
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incorporates unit values of the mass m. The Klein-Gordon equation is a direct 

quantization of the classical relativistic energy-momentum equation in the form: 

 

                                        
2

t2  – 2 = mo
2 ,     

 

and necessarily applies to fermions as well as bosons. This, we will see, is 

related to the fact that a fermion cannot be seen as isolated from its 

‘environment’, and so effectively always acts as a member of a composite 

bosonic state. 

Kinetic energy is always associated with rest mass, and cannot be defined 

without it; photons ‘slowing down’ in a gravitational field or condensed matter 

effectively acquire the equivalent of a rest mass. Potential energy, on the other 

hand, is associated with ‘relativistic’ mass because this term is actually defined 

through a potential energy-type expression (E = mc2). Light in free space 

provides the extreme case, with no kinetic energy or rest mass, and 100 % 

potential energy or relativistic mass. In both classical and quantum physics, we 

use the kinetic energy relation when we consider a particle as an object in itself, 

described by a rest mass m0, undergoing a continuous change; and the potential 

energy relation when we consider a particle within its ‘environment’, with 

‘relativistic mass’, in an equilibrium state requiring a discrete transition for any 

change. 

The particle and its ‘environment’ can be considered as two ‘halves’ of a 

more complete whole. This is evident, in the case of a material particle, when 

we expand its relativistic mass-energy term (mc2) to find its kinetic energy (½ 

mov
2). In effect, we either take the relativistic energy conservation equation 

 

     E – mc2
 = E2 – p2c2 – mo

2c4 = 0  .   

  

as a ‘relativistic’ mass or potential energy equation, incorporating the particle 

and its interaction with its environment, and then quantize to a Klein-Gordon 

equation, with integral spin; or, we separate out the kinetic energy term using 

the rest mass mo, by taking the square root of 

  E2 = mo
2c4 









1 – 
v2

c2  –1 , 

to obtain 

  E = moc
2 + 

mov
2

2
 + … . 

and, if we choose, quantize to the Schrödinger equation, and spin ½.. The ½ 

occurs in the act of square-rooting, or the splitting of 0 into two nilpotents in the 

Dirac equation; the ½ in the nonrelativistic Schrödinger approximation is a 

manifestation of this which we can trace through the ½ in the relativistic 

binomial approximation. If we go directly to the Dirac equation to obtain the 

spin ½ term, we see that the same result emerges from the behaviour of the 
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anticommuting terms, the anticommuting property is a direct result of taking the 

QSV as a nilpotent. So the anticommuting and binomial factors have precisely 

the same origin. 
 

5 Radiation reaction 
 

One way of looking at the factor 2 is that it links the continuous with the 

discontinuous. Expressions involving half units of h̄, representing an average or 

integrated increase from 0 to h̄, are characteristic of continuous aspects of 

physics, while those involving integral ones are characteristic of discontinuous 

aspects. The Schrödinger theory is an example of a continuous option, while the 

Heisenberg theory is discontinuous. Stochastic electrodynamics, which is based 

on the existence of zero-point energy of value h̄ / 2, is another completely 

continuous theory, which has developed as a rival to the purely discrete theory 

of the quantum with energy h̄. 

It is important that we recognize that these alternative options do not 

represent different systems; they are different ways of interpreting the same 

system, and both are required for a complete explanation. Each has to 

incorporate the alternative option in some way. Thus, the Schrödinger approach 

is a continuous one, based on ½ h̄, but incorporates discreteness (based on h̄) in 

the process of measurement – the so-called collapse of the wavefunction. The 

Heisenberg approach, by contrast, assumes a discrete system, based on h̄, but 

incorporates continuity (and ½ h̄) in the process of measurement – via the 

uncertainty principle and zero-point energy. There seems always to be a route by 

which ½ h̄ in one context can become h̄ in another. A characteristic example 

is black-body radiation, where the spontaneous emission of energy of value h̄ 

combines the effects of ½ h̄  units of energy provided by both oscillators and 

zero-point field. In terms of fundamental particles, we see that a fermionic 

object on its own shows changing behaviour, requiring an integration which 

generates a factor ½ in the kinetic energy term, and a sign change when it rotates 

through 2, while a conservative ‘system’ of object plus environment shows 

unchanging behaviour, requiring a potential energy term, which is twice the 

kinetic energy. 

The ½ h or ½ h̄ for black body radiation appears in both the theories of 

Planck, of 1911, and of Einstein and Stern, of 1913. In the Schrödinger version 

of quantum mechanics, as we have seen, the zero-point energy term is derived 

from the harmonic oscillator solution of the Schrödinger equation, showing the 

kinetic origins of the factor ½, while, in the Heisenberg version, it comes from 

the ½ h̄ term involved in the uncertainty principle, suggesting an origin in 

continuum physics. The ½ h̄ → h̄ transition for black body radiation can also 

be explained in terms of radiation reaction, which is connected again with the 

distinction between the relativistic and rest masses of an object. Rest mass 

effectively defines an isolated object, with kinetic energy. Relativistic mass, on 

the other hand, already incorporates the effects of the environment. For a 
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photon, which has no rest mass, and only a relativistic mass, the energy mc2 

behaves exactly like a classical potential energy term, as when a photon gas 

produces the radiation pressure c2 / 3. We take into account both action and 

reaction because the doubling of the value of the energy term comes from 

doubling the momentum when the photons rebound from the walls of the 

container, or, alternatively, are absorbed and re-emitted. Exactly, the same thing 

happens with radiation reaction, thus explaining an otherwise ‘mysterious’ 

doubling of energy from ½ h to h. In a more classical context, Feynman and 

Wheeler require a doubling of the contribution of the retarded wave in 

electromagnetic theory, at the expense of the advanced wave, by assuming that 

the vacuum behaves as a perfect absorber and reradiator of radiation. 

From our analysis, it would seem that by incorporating radiation reaction in 

the process we are also incorporating the effect of Newton’s third law. However, 

as in the parallel case of the anomalous magnetic moment of the electron, many 

of the same results are also explained by special relativity. Whitney3 has argued 

that the correct magnetic moment for the electron is obtained, without relativity, 

by treating the transmission of light as a two-step process involving absorption 

and emission. In our terms, this is equivalent to incorporating action and 

reaction, and, as we have seen, the same result follows classically by taking the 

energy value at the moment when the field is switched on, which then becomes 

the new potential energy value when the system is in steady state. If, however, 

we use a one-step process, we also need relativity, because, once we introduce 

rest mass, we can no longer use classical equations. The two-step process is 

analogous to the use of radiation reaction, so it follows, in principle, that a 

radiation reaction is equivalent to adding a relativistic ‘correction’ (such as the 

Thomas precession). 

Whitney also argues that the two-step process removes those special 

relativistic paradoxes which involve apparent reciprocity, and we could say that 

special relativity, by including only one side of the calculation, effectively 

removes reciprocity, and so leads to such things as asymmetric ageing in the 

twin paradox. Very similar arguments also apply to the idea that the problem 

lies in attempting to define a one-way speed of light that cannot be measured, 

because a two-way measurement of the speed of light also requires a two-step 

process. An argument by Morris4 that the complete reciprocity involves a 

universal reference frame can be related to the notion here that reciprocity or 

reaction is the ‘environmental’ contribution as opposed to that of the particle. 

 

6 Supersymmetry and the Berry phase 

 

Taking ‘environment’ to apply to either a material or vacuum contribution, 

we can makes sense, not only of the boson / fermion distinction and the spin 1 / 

½ division in a fundamental way, but also such related concepts as 

supersymmetry, vacuum polarization, pair production, renormalization, 
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zitterbewegung, and so on, because the halving of energy in ‘isolating’ the 

fermion from its vacuum or material ‘environment’ is the same process as 

mathematically square-rooting the quantum operator via the Dirac equation. 

Taking this further, we can propose that energy principles determine that all 

fermions, in whatever circumstances, may be regarded either as isolated spin ½ 

objects or as spin 1 objects in conjunction with some particular material or 

vacuum environment, or, indeed, the ‘rest of the universe’. Characteristic 

examples of this occur when integral spins are produced automatically from 

half-integral spin electrons using the Berry phase, and, by generalizing this kind 

of result to all possible environments, we extend the principle in the direction of 

supersymmetry. 

In the most general terms, we can consider that a relationship exists 

between any fermion and ‘the rest of the universe’, such that the total 

wavefunction representing fermion plus ‘rest of the universe’ is necessarily 

single-valued, automatically introducing the Berry phase. The Jahn-Teller effect 

and Aharonov-Bohm effect are examples of the action of this phase. Treated 

semi-classically, the Jahn-Teller effect couples the factors associated with the 

motions of the electronic and nuclear coordinates so that different parts of the 

total wave function change sign in a coordinated manner to preserve the single-

valuedness of the total wave function. In the Aharonov-Bohm effect, electron 

interference fringes, produced by a Young’s slit arrangement, are shifted by half 

a wavelength in the presence of a solenoid whose magnetic field, being internal, 

does not interact with the electron but whose vector potential does. Effectively, 

the half-wavelength shift, or equivalent acquisition by the electron of a half-

wavelength Berry phase, implies that an electron path between source and slit, 

round the solenoid, involves a double-circuit of the flux line (to achieve the 

same phase). 

This duality between the fermion and its environment occurs with the actual 

creation of the fermion state. Splitting away a fermion from a ‘system’ (or ‘the 

universe’), we have to introduce a coupling as a mathematical description of the 

splitting. The converse effect must also exist, with bosons of spin 0 or 1 

coupling to an ‘environment’ to produce fermion-like states. Both fermions and 

bosons, it would seem, always produce a ‘reaction’ within their environment, 

which couples them to the appropriate wavefunction-changing term, so that the 

potential / kinetic energy relation can be maintained at the same time as its 

opposite. It is possible to show that the whole process of renormalization 

depends on an infinite chain of such couplings through the vacuum. The 

coupling of the vacuum to fermions generates ‘boson-images’ and vice versa. 

To understand this principle in more detail, we need to develop the 

nilpotent version of the Dirac wavefunction. In terms of the ‘environment’ 

principle, a fermion generates an infinite series of interacting terms of the form: 

 

(kE + iip + ijm) 
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(kE + iip + ijm) (–kE + iip + ijm) 

(kE + ikp + ijm) (–kE + iip + ijm)( kE + iip + ijm) 

(kE + iip + ijm) (–kE + iip + ijm)( kE + iip + ijm) (–kE + iip + ijm), etc. 

 

where (kE + iip + ijm) (abbreviated from the 4-component vector) represents a 

fermion state and (–kE + iip + ijm) an antifermion. The (kE + iip + ijm) and (–

kE + iip + ijm) vectors are also an expression of the behaviour of the vacuum 

state, which acts like a ‘mirror image’ to the respective antifermion / fermion. 

An expression such as 

    (kE + iip + ijm) k (kE + iip + ijm) 

 

for a fermion creation operator is part of an infinite regression of images of the 

form 

 

(kE + iip + ijm) k (kE + iip + ijm) k (kE + iip + ijm) k (kE + iip + ijm) ...  

 

where the vacuum state depends on the operator that acts upon it, the vacuum 

state of (kE + iip + ijm), for example, becoming k (kE + iip + ijm). In each case, 

the action simply reproduces the original state (after normalization). In addition, 

 

(kE + iip + ijm) k (kE + iip + ijm) k (kE + iip + ijm) k (kE + iip + ijm) ...  

 

is the same as 

 

(kE + iip + ijm) (–kE + iip + ijm) (kE + iip + ijm) ( –kE + iip + ijm) ... . 

 

It thus appears that the infinite series of creation acts by a fermion / 

antifermion on vacuum is the mechanism for creating an infinite series of 

alternating boson and fermion / antifermion states as required for 

supersymmetry and renormalization. The nilpotent operators defined as QSVs 

for fermions and antifermions are also supersymmetry operators, which produce 

the supersymmetric partner in the particle itself. The Q generator for 

supersymmetry is simply the term (kE + iip + ijm), and its Hermitian conjugate 

Q† is (–kE + iip + ijm). Multiplying by (kE + iip + ijm) converts bosons to 

fermions, or antifermions to bosons. Multiplying by (–kE + iip + ijm) produces 

the reverse conversion of bosons to antifermions, or fermions to bosons. The 

supersymmetric partners, however, are not so much realisable particles, as the 

couplings of the fermions and bosons to vacuum states. The ‘mirror imaging’ 

process thus implies an infinite range of virtual E values in vacuum adding up to 

a single finite value, exactly as in renormalisation, with equal numbers of boson 

and fermion loops cancelling through their opposite signs. That is, if the 

supersymmetric virtual partners are merely vacuum images of the original 

particles, their mass values will be identical, so the infinite sum of boson masses 
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added to the vacuum will be identical to the infinite sum of fermion masses 

subtracted, so cancelling out exactly without requiring special assumptions 

about the nature of the vacuum or the masses of the supersymmetric states. 

The existence of such ‘supersymmetric’ partner seemingly comes from the 

duality represented by the choice of fermion or fermion plus environment. The 

isolated fermion represents the action half of Newton’s third law, and 

characterized by kinetic energy, continuous variation, and spin in half-integral 

units, while in the case of the fermion interacting with its environment, it is the 

action and reaction pair, characterized by potential energy, a stable state, and 

spin in integral units. The combination then represents either a real boson with 

two nilpotents (which are not nilpotent to each other), or a bosonic-type state 

produced by a fermion interacting with its material environment or vacuum, 

and, as a consequence, manifesting Berry phase, the Aharonov-Bohm or Jahn-

Teller effect, Thomas precession, relativistic correction, radiation reaction, the 

quantum Hall effect, Cooper pairing, zitterbewegung, or whatever else is needed 

to produce the ‘conjugate’ state in the fermion’s ‘environment’. 

Physics and mathematics, however, are not isolated from each other at the 

fundamental level, and the process may also be seen in mathematical contexts. 

The half-wavelength shift in the Aharonov-Bohm effect, for example, is also 

well known to be a feature of the topology of the space surrounding the discrete 

flux-lines of the solenoid, which is not simply-connected, and cannot be 

deformed continuously down to a point. A path that goes round a circuit twice 

cannot be continuously deformed into a path which goes round once (as would 

be the case in a space without flux-lines). The presence of the flux line is 

equivalent, as in the quantum Hall effect and fractional quantum Hall effect 

(which also involve fermions and flux lines), to the extra fermionic ½-spin 

which is provided by the electron acting in step with the nucleus in the Jahn-

Teller effect and makes the potential function single-valued, and the circuit for 

the complete system a single loop. 

It is of particular significant that the U(1) (electromagnetic) group 

responsible for the fact that the vacuum space is not simply connected is 

isomorphic to the integers under addition. The spin-½, ½-wavelength-inducing 

nature of the fermionic state (in the case of either the electron or the flux line) is, 

in effect, a product of discreteness in both the fermion (and its charge) and the 

space in which it acts. In principle, the very act of creating a discrete particle 

requires a splitting of the continuum vacuum into two discrete halves, or 

(relating the concept of discreteness to that of dimensionality) two square roots 

of 0. 

 

7 Physics and duality 

 

From the foregoing discussion, it would appear that the factor 2 may be 

seen as a result of action and reaction (A); commutation relations (C); 
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absorption and emission (E); object and environment (O); relativity (R); the 

virial relation (V); or continuity and discontinuity (X). Many of these 

explanations, however, overlap in the case of individual phenomena, suggesting 

that they are really all part of some more general overall process: 

 

 Kinematics         V X 

 Gases    A     V 

 Orbits    A     V X 

 Radiation pressure   A  E   V 

 Gravitational light deflection       R V 

 Fermion / boson spin    C  O R V 

 Zero-point energy   A C    V X 

 Radiation reaction   A  E  R V 

 SR paradoxes   A  E 

 

In addition, the complete description of the system tends to lead to the 

overall elimination of the factor. The use of the factor 2 is a two-way process: 

halving in one direction and doubling in another, and the system can only be 

described in complete terms by taking both into account. Physical phenomena 

involving the factor tend to incorporate, in some form, the opposing sets of 

characteristics. Kinetic energy variation, for example, is continuous, but it starts 

from a discrete state; potential energy variation, on the other hand, is discrete, 

but starts from a continuous state. Neither kinetic nor potential exists 

independently: each creates the other, just like action and reaction. 

In the most general terms, the factor 2 is an expression of fundamental 

dualities which result from the attempt at creating something from nothing. (In 

principle, the attempt is only possible if 0 is also the end result. Nihil ex nihil 

fit!) Essentially, they are the result of three distinct mathematical processes, 

which may be described as conjugation, complexification and 

dimensionalization. In an abbreviated form of the argument, we start, with the 

most fundamental dual group (C2), which we describe in mathematical terms, 

using the elements 1 and –1, but which, physically, is just anything and its 

conjugate, the totality being 0. (In the most general case, we begin without 

assuming units, or even numbers at all, by simply assuming an undefined 

category ; discreteness and numbering then arise as a result of 

anticommutativity or dimensionalization.4) Then we proceed by a further series 

of ‘duallings’ to create higher order groups. Assuming conjugation at all 

subsequent levels, we extend to four elements, to find an equivalent to C2 × C2, 

by introducing complexification. The group of 1, –1, i, –i is not, of course, C2 × 

C2, but C4, but it contains the same information as C2 × C2, if we write this in 

the form of the complex ordered pairs: 1, i; 1, –i; –1, i; –1, –i.  Dualling further, 

we can complexify indefinitely, as in: 

 



 

 

460 

 

 order 2 (1, –1) 

 order 4 (1, –1)  (1, i1) 

 order 8 (1, –1)  (1, i1)  (1, j1) 

 order 16 (1, –1)  (1, i1)  (1, j1)  (1, i2) 

 order 32 (1, –1)  (1, i1)  (1, j1)  (1, i2)  (1, j2) 

 order 64 (1, –1)  (1, i1)  (1, j1)  (1, i2)  (1, j2)  (1, i3) , etc. 

 

or, multiplying out: 

 

 order 2  1 

 order 4  1,  i1 

 order 8  1,  i1,  j1,  i1j1 

 order 16  1,  i1,  j1,  i1j1,  i2,  i2i1,  i2j1,  i2i1j1 

 order 32  1,  i1,  j1,  i1j1,  i2,  i2i1,  i2j1,  i2i1j1, 

   j2,  j2i1,  j2j1,  j2i1j1,  j2i2,  j2i2i1,  j2i2j1,  j2i2i1j1 

 order 64  1,  i1,  j1,  i1j1,  i2i1,  i2i1,  i2j1,  i2i1j1, 

   j2,  j2i1,  j2j1,  j2i1j1,  j2i2,  j2i2i1,  j2i2j1,  j2i2i1j1 

   i3,  i3i1,  i3j1,  i3i1j1,  i3i2,  i3i2i1,  i3i2j1,  i3i2i1j1, 

   i3j2,  i3j2i1,  i3j2j1,  i3j2i1j1,  i3j2i2,  i3 j2i2i1,  i3j2i2j1,  

   i3j2i2i1j1 

 

Here we have an option. We can choose either (i1j1)
2 = 1 or (i1j1)

2 = –1, 

implying respective commutation or anticommutation. The first allows an 

infinite number of possibilities; the second produces a closed system, with no 

further options available (quaternions). This we may describe as 

dimensionalization, and the infinite series of groups may be considered as an 

infinite number of independent quaternion systems. We then obtain the 

sequence: 

 

 order 2 real scalar 

 order 4 complex scalar (pseudoscalar) 

 order 8 quaternions 

 order 16 complex quaternions or multivariate vectors 

 order 32 double quaternions 

 order 64 complex double quaternions or multivariate vector quaternions 

 

with the processes defined by: 

 

 

 

C2 C2  1 conjugate 

C4 C2  C2  1,  i  complexify 
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Q8 C2  C2  C2 1,  i,  j,  k

 dimensionalize 

V16 C2  C2  C2  C2  1,  i,  i,  j,  k complexify 

QQ32 C2  C2  C2  C2  C2  1,  I,  J,  K,  i,  j,  k

 dimensionalize 

VQ64 C2  C2  C2  C2  C2  C2  1,  i,  I,  J,  K,  i,  j,  k complexify 

 

 

Products of all terms are here assumed, and the complex quaternion terms 

( ii,  ij,  ik) implied by V16 can be more conveniently written as multivariate 

vectors (i, j, k), like the ( iI,  iJ,  iK) terms of VQ64. The structure repeats at 

order 16 but to incorporate all those of orders 2, 4, 8 and 16 as independent 

units, we need order 64. We can identify the four new algebraic units introduced 

as being those of mass           (-energy) (real scalar, 1), time (pseudoscalar i), 

charge (quaternions i, j, k) and space (multivariate vectors, i, j, k); and the 

combined algebra of order 64 as the Dirac state vector, which is, significantly, a 

nilpotent (which takes us immediately back to the required 0), while the Hilbert 

space incorporating all the Dirac state vectors then takes the order of the 

structure to infinity. We can also express the properties of the fundamental 

parameters in terms of the three processes which create the entire system in the 

table: 

 

 

 space nonconjugated real dimensional 

 time nonconjugated complex nondimensional 

 mass conjugated real nondimensional 

 charge conjugated complex dimensional 

 

 

Conjugated here is equivalent to conserved, so a positive charge (or 

positive source of mass-energy) cannot be created without also creating a 

negative one. It is also equivalent to the unchanging state (as implied in 

potential energy equations) as opposed to the changing or unconjugated (kinetic) 

state. As recognized in earlier work, only the (3-)dimensional quantities, space 

and charge, are countable. As in conventional mathematics, two versions of the 

‘real’ numbers emerge from this structure: the uncountable ones of the Cantor 

continuum and standard analysis (which apply to mass), and the countable ones 

of the Löwenheim-Skolem arithmetic and Robinson’s non-standard analysis 

(which apply to space). 

In terms of the mathematical structure here proposed, it would be possible 

to classify the physical processes involving the factor 2 as resulting from the 

following processes: 
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 action and reaction (A)  conjugation  

 commutation relations (C)  dimensionalization 

 absorption and emission (E)  conjugation 

 object and environment (O)  conjugation 

 relativity (R)  complexification 

 the virial relation (V)  conjugation 

 continuity and discontinuity (X)  conjugation / 

dimensionalization 

 

However, overlap is possible in most, or even all, of these cases, and physical 

systems which apply a doubling through one route will involve a halving 

through another. For example, gravitational light deflection, if treated as 

relativistic, doubles its value because of complexification, both space and time 

being considered. However, the double deflection can also be derived from the 

use of a kinetic energy term being half the total (potential) energy, because it 

represents the unconjugated rather than the conjugated case. This is why there 

are so many physical phenomena involving the factor 2 with alternative 

explanations. The factor appears when we look at a process from a one-sided 

point of view. Though a single duality separates alternative theories, such as 

Heisenberg and Schrödinger, or quantum mechanics and stochastic 

electrodynamics, it is invariably open to more than one interpretation because 

each pair of parameters is always separated by two distinct dualities, and the 

separate interpretations ultimately act together when we consider a phenomenon 

in relation to its place in the overall ‘environment’ of the physical universe. 
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