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Abstract: 3-dimensionality is identified as one of the most profound and 

fundamental concepts in physics. With its origin in ideas of 

anticommutativity, which are antecedent to the concept of number, it is 

responsible for all discreteness in physical systems, and in particular for 

quantization. It is responsible for symmetry breaking between the forces, 

for many significant aspects of particle structure, and for most of the 

manifestations of the number 3 that are considered fundamental in 

physics. It is responsible for the selection of the fundamental parameters 

that we use in the most basic physical explanations, and for their special 

properties, and the Dirac equation is specially structured to accommodate 

it. No other dimensionality, not even that of ‘4-dimensional’ space-time, 

has any fundamental physical significance, a fact which has extremely 

profound consequences for a unified theory. 

 

1 Discreteness and dimensionality 

 

String theorists regularly talk of 10 and 11 dimensions. Special 

relativity uses a 4-dimensional space-time. Kaluza-Klein theory 

introduces a fifth dimension to general relativity to account for the 

electromagnetic field. All this is done on the basis that the origin and 

meaning of dimensionality in nature are matters still to be decided, that, a 

priori, no particular number of dimensions is more likely than any other, 

that no number associated with dimensionality can be privileged, and that 

the actual number of dimensions is still negotiable. 

Yet 3-dimensionality is very special. It has a mathematical as well as 

physical validity, which should make us wary of cavalierly expanding the 

number of dimensions in our system to meet the immediate needs of 

defining a physically inclusive theory. And the number 3 appears 

everywhere in fundamental physical contexts – 3 dimensions of space, 3 

nongravitational interactions, 3 fundamental symmetries (C, P and T), 3 

conserved dynamical quantities (momentum, angular momentum and 

energy), 3 quarks in a baryon, 3 generations of fermions. Could these be 

in any way related, and could the explanation of their common ‘threeness’ 

somehow lead to a deeper explanation of physical ‘reality’ than is 

apparent from the more complex attempts at explanation represented by 



 293 

string theory? What could be special about the number 3 which could 

unite these apparently disparate manifestations of its application? 

To answer this, I need to draw upon an idea which I have long held 

and often written about. (Rowlands, 1983, 1991, 1999, 2001) This is the 

idea that the most fundamental concepts in physics are the parameters 

space and time, and the sources of the four fundamental interactions, 

namely mass (or mass-energy) and three types of ‘charge’ 

(electromagnetic, strong and weak), which it is convenient to describe as 

orthogonal dimensions in a ‘charge space’. Seemingly, these parameters 

are symmetric according to a Klein-4 scheme, with the following 

properties and exactly opposite ‘antiproperties’: 

 

 mass conserved  real  continuous 

      nondimensional 

 

 time nonconserved  imaginary continuous 

      nondimensional 

 

 charge conserved  imaginary discrete 

    dimensional 

 

 space nonconserved  real discrete 

    dimensional 

 

A remarkable aspect of this symmetry lies in the last column, where 

there are two properties and two antiproperties, which, if the symmetry is 

exact, must be linked. We are obliged, it would seem, to suppose that 

discreteness and dimensionality are intrinsically related properties. In 

addition, though it is apparent that discreteness and continuity can be 

considered as a genuinely opposite pairing of property and antiproperty, it 

is not quite so obvious that the same applies to (3)-dimensionality and 

nondimensionality, or, as it is sometimes called, 1-dimensionality. 

However, ‘1-dimensional’ quantities are not really dimensional at all, 

and it is relatively easy to see why an absolutely continuous quantity 

cannot be dimensional. Dimensionality requires an origin, a cross-over 

point or zero position, that is a distinct discontinuity of some kind, which 

is of course incompatible with the kind of absolute continuity which 

makes time irreversible and mass-energy unipolar and ubiquitous in the 

form of the vacuum or Higgs field. 

If the linkage here seems relatively obvious, it is far from obvious that 

discrete quantities must be dimensional, and specifically 3-dimensional at 

that. However, each of the two known dimensional quantities seems to 

supply half of the required explanation. Thus, the discreteness of space is 
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associated with its use as the unique channel of physical measurement 

because the nonconserved nature of space means that its discreteness can 

be endlessly restructured. Measurement would, of course, be impossible 

in one dimension. A continuous line would offer no possibility of 

measurement unless it could be drawn in a 2-dimensional space with the 

other dimension providing the marking off of the zero points or origins. 

At the same time, the imaginary nature of charge would appear to imply 

that any dimensionality associated with this quantity must be 3-

dimensionality, as required by the algebra of quaternions. 

The link between discreteness and 3-dimensionality would appear to 

be a result of the other properties associated with the parameters which we 

have defined as discrete, and there appears to be no direct route to be 

found leading from discreteness itself to dimensionality. However, this is 

not the case with the reverse process, and it is in fact possible to show that 

dimensionality is really the primary property, and that all discreteness in 

nature results from dimensionality, and that only 3-dimensional quantities 

are discrete. 

 

2 The consequences of zero totality 

 

To find the route from dimensionality to discreteness, we again refer 

to the table of properties for the fundamental parameters, and observe that, 

in the conceptual sense, it represents a zero totality, every property in a 

parameter being negated by the corresponding antiproperty in another. 

Remarkably, it is from this perceived need to preserve a zero totality in 

nature that 3-dimensionality ultimately springs. If we suppose that the 

only logical condition which incorporates no special assumptions is a zero 

totality, we may assume that any attempted deviation from this state will 

automatically generate its own zeroing mechanism, exactly as we observe 

in the physical world when we conserve momentum or angular 

momentum. 

Let us suppose that we describe deviations from zero by a nonunique 

term , which remains simply unspecified and undefined, and which can 

only be examined in relation to itself in such a way that it forces an 

attempt at recovering the original zero totality. The immediate outcome of 

the ‘self-examination’ ()  () = () will be a conjugate, or zero-

producing, term, which we may represent by –, without making any 

assumptions about a specific mathematical meaning for the symbol. 

Again, without making mathematical assumptions, we can represent the 

process in the form: 

 

                                ()  () = () → (, –) 
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Let us describe objects of the form () and (, –) as ‘alphabets’, 

and any representations of components as ‘subalphabets’ (Rowlands and 

Diaz, 2002). Then we may suppose that any examination of an alphabet in 

relation to a subalphabet will produce the original alphabet in the same 

way as ()  () = (). So we have, for example: 

 

          ()  (, –) = (, –)       and      (–)  (, –) = (, –)  . 

 

We may assume, however, that the process of producing a conjugate 

is no more unique than the symbol and that the same will apply to the new 

symbol. So examining this in relation to itself will produce a new 

conjugated alphabet, for example: 

 

                  (, –)  (, –) = (, –) → (, –, C , –C ) 

where 

                          ()  (, –, C , –C ) = (, –, C , –C ) 

                        (–)  (, –, C , –C ) = (, –, C , –C ) 

                   (, –)  (, –, C , –C ) = (, –, C , –C ) 

                    (C , –C )  (, –, C , –C ) = (, –, C , –C ) , etc. 

 

From such expressions, we derive also the results of the ‘actions’ of 

subalphabets upon each other. For example: 

 

                              (–)  (–) = () 

                                   ()  (C ) = (C ) 

                                    (C )  (C ) = (–) 

                                  (C )  (–C ) = () 

 

Further conjugated alphabets will be constructed with appropriate 

subalphabets so that the correct rules will automatically apply. 

 

 (, –, C , –C )  (, –, C , –C ) = (, –, C , –C , C C ', –C ', C C ', –C C ') . 

 

In effect, we will generate a series of C -type terms, C , C ', C '', C ''', etc., 

and their ‘actions’ upon each other, such as C C '; and the ‘self-action’ of  

the C -type terms will always result in (–). The series may be imagined 

as continuing to infinity, and generating itself in the supervenient, not 

temporal, sense, with all the terms existing at once. If, however, we take 

any pair of terms in the C  series, say X and Y, then either 

 

             (XY)  (XY) = (–)         or        (XY)  (XY) = ()  . 
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These may be described as the respective anticommutative and 

commutative options. The significant point here is that the 

anticommutative option can be used only once. For any given X, there is 

only a single Y and a single XY. X, Y and XY form a closed cycle. This is 

exactly what we mean by 3-dimensionality: it is the direct manifestation 

of closure through anticommutativity, and has no other fundamental 

significance. On the other hand, the commutative option remains open to 

infinity with an unlimited number of Y terms for any given X. 

Clearly, there are an infinite set of available options within this 

alphabet-generating mechanism, but, going for maximum efficiency, i.e. 

the minimum generation of rules, we may set the default condition at the 

anticommutative option as the automatic choice whenever this is 

available. We then produce a regular sequence of closed finite-

dimensional systems taking us to infinity, which has exactly the same 

form as the set of finite integers in conventional enumeration, and can be 

used exactly for this purpose, occurring even in a ready-made binary 

form. We create numbers at the same time as we create finite (3-

)dimensionality, exactly as physics seems to suggest that we must. 

 

3 The alphabet becomes algebra 

 

With the concept of numbers established, we can now choose to 

interpret , which is not itself defined in terms of finite enumeration, as 

the Cantorian or non-denumerable set of real numbers and the C -series as 

an infinite set of complex forms, whose real ‘magnitudes’, when closed, 

are represented by the constructible real numbers of Robinson’s non-

standard analysis or Skolem’s non-standard arithmetic, and by the 

Cantorian reals when open. The – sign can be seen as referring to 

arithmetic or algebraic negation and  as arithmetic or algebraic 

multiplication. These definitions do not retrospectively limit the generality 

of the argument in the preceding section to a mathematical one, and only 

apply where we choose an option which introduces the counting of 

discrete numbers. We can now define counting units within , C , C ', C '', 

C ''', ... as, say, 1, i1, j1, i2, j2,..., in which in, jn, in jn = kn, and so on, are 

independent sets of quaternions, following the usual rules determined by 

anticommutativity: 

 

                                   in jn = – jn in = kn  

                                  jn kn = – kn jn = in  

                                  kn in = – in kn = jn  

                             in
2 = jn

2 = kn
2 = in jn kn = –1  . 
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All other products, however, follow the rules of commutativity. For 

example, when m  n,  

                                       im in = in im 

                                       im jn = jn im 

                                       jm jn = jn jm 

and 

                                    (im in) (im in) = 1 

                                    (im jn) (im jn) = 1 

                                    (jm jn) (jm jn) = 1 

even though 

                               im
2 = in

2 = jm
2 = jn

2 = –1  . 

 

We can further interpret this algebraic series as a dualistic doubling of 

terms in each conjugation process, so that the series: 

 

 order 2 (1, –1) 

 order 4 (1, –1)  (1, i1) 

 order 8 (1, –1)  (1, i1)  (1, j1) 

 order 16 (1, –1)  (1, i1)  (1, j1)  (1, i2) 

 order 32 (1, –1)  (1, i1)  (1, j1)  (1, i2)  (1, j2) 

 order 64 (1, –1)  (1, i1)  (1, j1)  (1, i2)  (1, j2)  (1, i3) , 

 

generates the terms:  

 

 order 2  1 

 order 4  1,  i1 

 order 8  1,  i1,  j1,  i1j1 

 order 16  1,  i1,  j1,  i1j1,  i2,  i2i1,  i2j1,  i2i1j1 

 order 32  1,  i1,  j1,  i1j1,  i2,  i2i1,  i2j1,  i2i1j1, 

   j2,  j2i1,  j2j1,  j2i1j1,  j2i2,  j2i2i1,  j2i2j1,  j2i2i1j1 

 order 64  1,  i1,  j1,  i1j1,  i2i1,  i2i1,  i2j1,  i2i1j1, 

   j2,  j2i1,  j2j1,  j2i1j1,  j2i2,  j2i2i1,  j2i2j1,  j2i2i1j1 

   i3,  i3i1,  i3j1,  i3i1j1,  i3i2,  i3i2i1,  i3i2j1,  i3i2i1j1, 

   i3j2,  i3j2i1,  i3j2j1,  i3j2i1j1,  i3j2i2,  i3j2i2i1,  i3j2i2j1,  

        i3j2i2i1j1 

 

We recognise the algebraic groups in this series as those of: 
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 order 2 real scalars 

 order 4 complex scalars (real scalars plus pseudoscalars) 

 order 8 quaternions 

 order 16 complex quaternions or multivariate 4-vectors 

 order 32 double quaternions 

 order 64 complex double quaternions or multivariate vector quaternions 

 

Another way to look at the series is in terms of an endless succession 

of just three processes: conjugation (introducing opposite algebraic signs), 

complexification (multiplying by a single imaginary term); 

dimensionalization (multiplying by the imaginary term which will 

complete the quaternion set): 

 

 order 2 conjugation   (1, –1) 

 order 4 complexification   (1, i1) 

 order 8 dimensionalization  (1, j1)  

 order 16 complexification   (1, i2)  

 order 32 dimensionalization  (1, j2)  

 order 64 complexification   (1, i3) 

 

The conjugation process only occurs once, because further applications 

would not change the character set, but the complexification and 

dimensionalization processes alternate to infinity. It is notable here that 

complex numbers are merely incomplete quaternion sets. It is significant, 

also, that order 16 is the point at which repetition begins. 

 

4 The algebra applied to physics 

 

Each of the processes involved in the generation of this algebra 

appears to have a realisation in physics, for we can easily identify the 

process of conservation with conjugation (meaning that the acquisition of 

a + value in a conserved or conjugated quantity can only happen if 

accompanied by the equivalent – value, and vice versa), and so write the 

table of parameters in the following form: 

 

 mass conjugated real  nondimensionalized 

 

 time nonconjugated complexified nondimensionalized 

       

 charge conjugated  complexified dimensionalized 

 

 space nonconjugated  real dimensionalized 
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We can also see that, in addition to thus encoding the three processes 

involved in the algebraic structure on an equal basis, the parameters also 

incorporate the first four stages in the emergent algebra itself, and so 

reach the point of repetition: 

 

 order 2 real scalar  1  mass 

 order 4 pseudoscalar  i  time 

 order 8 quaternions  i, j, k  charge 

 order 16 multivariate vectors i, j, k   space 

 

Here, the multivariate vectors (or Pauli matrices) which appear to apply to 

space, with multiplication rules: 

 

                                           i2 = j2 = k2 = 1 

                                           ij = −ji = ik 

                                          jk = −kj = ii 

                                          ki = −ik = ij  

           ijk = i . 

 

are completely isomorphic to the complex quaternions which appear at 

this stage in the algebra: 

                                        (ii)2 = (ij)2 = (ik)2 = 1 

                                     (ii)(ij) = −(ij)(ii) = i(ik) 

                                    (ij)(ik) = −(ik)(ij) = i(ii) 

       (ik)(ii) = −(ii)(ik) = i(ij) 

            (ii)(ij)(ik) = i . 

 

To incorporate the four algebras of space, time, mass and charge as 

independent units of a single comprehensive algebra, however, requires us 

to take our series to order 64, in the complex double quaternions or 

multivariate vector quaternions which appear in the Dirac equation, the 

fundamental equation needed to structure the whole of physics; and the 

Dirac equation, we will find, allows us a means of making an immediate 

return to zero at the same time as extending the algebra to infinity as 

required. This equation produces one of the most remarkable 

manifestations of 3-dimensionality in the whole of physics. 

 

5 The Dirac state and 3-dimensionality 

 

The conventional Dirac equation is structured on the 32-part algebra 

of the gamma matrices. Taking both + and – values, this forms a group of 

order 64 entirely isomorphic to the complex double quaternions or 
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multivariate vector quaternions which emerge from the algebra discussed 

in section 3. A mapping between the two algebras can be established by 

forming composite terms within the multivariate vector quaternions, for 

example: 

         o = −ii or o = ik 

    1 = ik  1 = ii 

    2 = jk  2 = ji 

    3 = kk  3 = ki 

    5 = ij   (1)  5 = ij  . (2) 

 

The binomial products of either of these 5-part sets or pentads will 

generate the entirely algebra in exactly the same way as the gamma 

matrices. When applied to the Dirac equation, set (1) can be converted to 

set (2) by multiplying the Dirac equation from the left by the equivalent of 

5, to produce a nilpotent equation. 

From the point of view of the fundamental algebra discussed in the 

previous sections, the pentad structures exemplified by (1) and (2) are the 

most efficient way of compactifying space, time, mass and charge into a 

single package. They are also a characteristic expression of the 

fundamental nature of 3-dimensionality and its relationship to closure. 

They produce a new infinite series of closed systems, which incorporate 

all the different processes and algebraic structures on an equal basis in 

such a way as to produce an immediate return to zero totality in each. 

Mathematically, the creation of a pentad involves taking the units of one 

of the two 3-dimensional components (the quaternion charge or vector 

space) and imposing each on the units of the other three parameters. We 

begin, for example, with: 

 

  time  space  mass  charge 

 

   i i   j   k   1   i  j  k 

 

and impose each of the three charge units onto one of the algebraic 

expressions representing time, mass or space: 

 

   i i   j   k   1   i  j  k 

   k     i    j   

 

to give the following combinations: 

 

   ik ii  ij  ik   j   
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though, for mathematical convenience and for compatibility with the 

conventional way of writing the Dirac algebra, we will often write them in 

the form: 

   k  iii   iij   iik    ij   . 

 

We might expect the new, composite units to represent entirely new 

physical parameters, incorporating both the properties of charge, namely 

conservation and discrete quantization, and those of the respective parent 

parameters, time, space and mass. In fact, the very act of structuring the 

new quantities on a 3-dimensional (charge) substrate requires the resulting 

3-dimensional combination to be discrete or quantized, though the new 

composite parameters, which we call the Dirac energy (E), the Dirac 

momentum (p) and the Dirac rest mass (m), will also retain the respective 

pseudoscalar, multivariate vector, and real scalar properties of time, space 

and mass: 

   ik ii  ij  ik   j  

   E      p  m 

 

The concept of ‘rest mass’ only emerges in this process of quantization, 

and only exists in classical physics because it also exists in quantum 

physics, while the quantization of the directional properties of the vector 

term is expressed by relation to another quantized quantity, the Dirac 

angular momentum. 

Dirac himself, on the basis of the quantization of angular momentum 

incorporated in the Dirac equation, apparently predicted that a magnetic 

monopole could exist with charge automatically quantized in integral 

multiples of fundamental constants, and that the existence of one such 

monopole anywhere in the universe would explain charge quantization. 

However, it would seem that it is rather the fundamentally quantized 

nature of charge that explains the quantization of angular momentum, and 

other quantities, in the Dirac state; so, the position is actually reversed. 

As already stated, the use of a conserved quantity as substrate leads to 

E, p and m being conserved quantities in the Dirac state, but it is also 

possible to express the same superposition in the context of 

nonconservation, in terms of the quantum (or differential) operators, 

relating to the parent quantities, time and space: 

 

   ik ii  ij  ik   j  

    /t         m 

 

although the object on which they act must be so structured as to produce 

the same conserved state as is represented by E, p and m. Exactly such a 

result is obtained by a differential operator acting on the exponential or 
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‘wave’ term, e–i(Et – p.r.), which can be seen as a mathematical 

representation of the group of space and time translations and rotations, 

which provide the maximal variation or ‘nonconservation’ for space and 

time coordinates in the most idealised or ‘free’ state. Because they lead to 

the same result, we can describe  /t as the operator E and  as the 

operator p. 

By necessity, quantization, in connecting all four parameters within a 

single dimensional structure necessarily establishes direct and inverse 

numerical relationships between their units. Through this process, E and t, 

and p and r, become conjugate variables, that is, ones which exchange 

statements about conservation into equivalent statements about 

nonconservation, and vice versa. The relationships between the units of E 

and p, and those of t and r, then lead to the introduction of the constants h̄ 

and c, while a third constant, G, is required when we involve m. These 

constants, as has long been known, have no intrinsic meaning; they are 

simply the inevitable consequence of creating a composite state. With the 

explicit introduction of h̄, the operator E becomes ih̄ /t, while the 

operator p becomes –ih̄, though the usual convention is to choose units 

such that h̄ = 1 and c = 1. 

Since the three components of the Dirac state, E, p, and m, are, from 

the fundamental properties of their parent-parameters time, space, and 

mass(-energy), specified by unrestricted real number values (though 

space’s are countable in the Löwenheim-Skolem sense), it is possible, 

using the anticommuting properties of the quaternion and vector 

operators, and the presence of at least one complex term, to find values of 

the Dirac state, ( kE  iip + ijm), which square to a zero numerical 

solution. We may then use this property to define those states in which the 

conservation of E, p, and m, applies at the same time as the absolute 

nonconservation of space and time. The expression which results is the 

nilpotent Dirac equation, which in its purest form, for the free state, is 

given by: 

 









 ik 


t
  i + ijm  = 









 ik 


t
  i + ijm ( kE  iip + ij m) e–i(Et – p.r)  = 0 

 

The conjugate nature of E, p and t, r means that, through the Dirac 

equation, we can also establish a nilpotent structure connecting t and r, 

with another term  (described as ‘proper time’) in the position occupied 

by m. The theory we know as ‘special relativity’ is merely the working 

out of the consequences of this structure, which we may write in the form 

( ikt  ir + j), under classical conditions. In fact, all other laws of 
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physics may be seen in some sense as consequences of or approximations 

to the nilpotent Dirac equation. 

Significantly, introducing the proper time term in the nilpotent 

expression ( ikt  ir + j) also introduces the principle of causality, and 

this, along with relativity, is conventionally held to be the reason for the 

validity of the CPT theorem. The derivation of this theorem in section 7 

depended on the necessity of the three terms in the nilpotent structure, ( 

kE  iip + ijm) or ( ikt  ir + j), having equal dimensional status, that is, 

on each having a quaternion operator. Causality, of course, is effectively a 

way of ensuring the irreversibility of time, and this, according to the 

symmetry group between the parameters presented in section 1, is 

equivalent to the unipolarity of mass, the term which occupies the ‘proper 

time’ slot in the energy-momentum nilpotent. 

The nilpotency of the Dirac or fermion state, the fact that ( kE  ii p 

+ ij m) squares to zero, gives us the opportunity of achieving the return to 

zero which was the original reason for the creation of the entire algebra, 

but we also need to extend the algebra to infinity. Here, we may consider 

the nilpotents 1, 2, 3, …, with coefficients which are unrepeated but 

arbitrary units or strings of units of the form is, as forming an infinite-

dimensional Grassmann algebra, with successive outer products defined 

by the Slater determinant, and so requiring 1 ^ 1 = 0 and 1 ^ 2 = – 2 

^ 1, etc. To create such an algebra, it would seem, the state vector units 

n must be both nilpotent and antisymmetric. The generating algebra 

which we have created from first principles can then be extended to 

infinity, through an algebraic and nonlocal superposition of fermionic 

states throughout the entire universe. Because we have an infinite range of 

real number values, we can consider each individual nilpotent to be 

unique, with superposition otherwise producing immediate zeroing – in a 

sense, an infinite number of individual or unique fermionic states, puts off 

the final return to zero, as each is examined against each other. It is this 

mathematical interconnectedness that allows us to group the nilpotents as 

closed ‘units’ of this even higher algebra, which is exactly equivalent to 

the conventional complex Hilbert space, and the nilpotency allows us to 

identify a part of the sequence without having to specify more than a finite 

number of the infinite number of terms which we know must exist. If the 

nilpotents were not themselves 3-dimensional, then this level of closure 

would not be possible. 

 

6 Baryons 

 

A classic example of the significance of 3-dimensionality occurs in 

the case of baryons. These structures only exist because the Dirac state 



 304 

vector incorporates the 3-dimensional term p. While it is clear that a state 

vector of the form 

 

                  (kE  ii p + ij m) (kE  ii p + ij m) (kE  ii p + ij m)  

 

would immediately zero itself, and so could not exist, this would not be 

the case with one of the form 

 

                 (kE  ii px + ij m) (kE  ii py + ij m) (kE  ii pz+ ij m) , 

 

where p may be imagined as having allowed phases in which only one of 

the three components of momentum, px, py, pz, is nonzero and represents 

the total p. The products 

 

                   (kE + ij m) (kE + ij m) (kE + ii p + ij m) 

                   (kE + ij m) (kE – ii p + ij m) (kE + ij m) 

                   (kE + ii p + ij m) (kE + ij m) (kE + ij m) 

 

would then become equivalent to the characteristic fermionic structure, –

p2(kE + ii p + ij m), while 

 

                   (kE + ij m) (kE + ij m) (kE – ii p + ij m) 

                   (kE + ij m) (kE + ii p + ij m) (kE + ij m) 

                  (kE – ii p + ij m) (kE + ij m) (kE + ij m) 

 

would result in p2(kE – ii p + ij m). 

Assuming perfect gauge invariance, it is clear that these phases have 

exactly the same structure and SU(3) symmetry as the conventional 

representation of the baryon, composed of three ‘coloured quarks’: 

 

                  ~ (BGR – BRG + GRB – GBR + RBG – RGB) , 

 

with the mappings: 

 

   BGR  → (kE + ij m) (kE + ij m) (kE + ii p + ij m) 

– BRG  → (kE + ij m) (kE – ii p + ij m) (kE + ij m) 

   GRB  → (kE + ij m) (kE + ii p + ij m) (kE + ij m) 

– GBR  → (kE + ij m) (kE + ij m) (kE – ii p + ij m) 

   RBG  → (kE + ii p + ij m) (kE + ij m) (kE + ij m) 

– RGB  → (kE – ii p + ij m) (kE + ij m) (kE + ij m) . 
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The behaviour of the strong interaction can then be understood in the 

most simple terms by mapping it onto the identical behaviour of the 

momentum or angular momentum operator p. We can even understand the 

perfect gauge invariance as a nonlocal ‘transfer’ of momentum between 

the phases at a rate independent of the separation of the component parts, 

which becomes equivalent to the linear potential used in the theory of the 

strong interaction. The principle may be expected to operate in relation to 

any states based on the ‘quark’ principle, or explicit use of the 3-

dimensional properties of the p operator, including quark-antiquark as 

well as 3-quark states. 

 

7 CPT symmetry 

 

CPT symmetry is an even more obvious result of 3-dimensionality. 

The P, T and C transformations are equivalent to reversals in the signs of 

space, time and mass-energy, and can be accomplished by using the i, k, 

and j operators which connect these to the three dimensions of charge in 

the Dirac state vector: 

 

Parity (P): i ( kE  ii p + ij m) i  =  ( kE +– ii p + ij m) 

 

Time reversal (T):  k ( kE  ii p + ij m) k  =  (+– kE  ii p + ij m) 

 

Charge conjugation (C): −j ( kE  ii p + ij m) j  =  (+– kE +– ii p + ij m) 

 

Obvious consequences of these are the combined transformations: 

 

CP = T: 

−j (i ( kE  ii p + ijm) i) j = k ( kE  ii p + ijm) k = (+– kE  ii p + ijm)  

 

PT = C:  

i (k ( kE  ii p + ijm) k) i  = −j ( kE  ii p + ij m) j = (+– kE +– ii p + ijm) 

  

TC = P:  

k (−j ( kE  ii p + ijm) j) k = i ( kE  ii p + ijm) i = ( kE +– ii p + ijm)  

 

and the fact that TCP  identity, because: 

 

     k (−j (i ( kE  ii p + ijm) i) j) k = −kji ( kE  ii p + ij m) ijk  

                              = ( kE  ii p + ij m). 
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8 Symmetry breaking and 3-dimensionality 

 

The combination of space, time, mass and charge in creating the Dirac 

state has another important physical consequence, as the quaternion units, 

i, j, k, are changed from being symmetrical and indistinguishable 

representations of independent charges into composite units whose 

symmetry is broken, by being associated with quantities with different 

mathematical properties (pseudoscalar, vector and real scalar). From the 

composition of ik, the combined (ii, ij, ik), and j, it is possible to derive 

the respective SU(2), SU(3) and U(1) symmetries associated with the 

weak, strong and electric charges. 

 

   ik ii  ij  ik   j  

   w      s  e 

 

But there is something even more fundamental at work here. Any 3-

dimensional structure which has individually identifiable components is, 

in principle, a broken or chiral symmetry, and it is always broken in the 

same way. If we take, say, a quaternion system and identify j (the label is 

arbitrary, but this choice will be convenient), then we have, typically, a 

magnitude or a level of complexification. If, but only if, we bring in a 

second term, say i, we will introduce dimensionalization, and it will 

necessarily be 3-dimensionalization, automatically generating k. This will 

mean that the k term now has nothing left to do, except determine + or – 

values, or right- or left-handed axes. In a sense, k has been made 

redundant, except for ‘book-keeping’. Of course, where we don’t identify 

the axes, as for example in the usual description of space rotation, the 

perfect symmetry is preserved, and it appears that the symmetry-breaking 

has a close association with the use of a concept of conservation or 

conjugation in connection with the axes, the ‘book-keeping’ term being 

specifically concerned with this, and being of the opposite complexity to 

the rest to ensure the zeroing of the squared nilpotent quantity, while 

keeping open the two possible sign options. 

The separate roles for the three axes in a 3-dimensional system with 

identifiable components has a remarkable similarity with the processes 

involved in creating the infinite algebra. The role of j is essentially that of 

complexification, the beginning of a new and as yet incomplete new 

quaternion system. The role of i is to introduce dimensionalization, while 

k is restricted to the ‘book-keeping’ role of conjugation or conservation. 

These also run parallel to the roles of scalar, vector and pseudoscalar 

quantities (which an extra i factor has transformed from the sequence 

pseudoscalar, quaternion, scalar). This is not, in fact, a coincidence, 

because the key properties of the fundamental parameters have been 
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chosen, by a process of physical ‘natural selection’ of what can be made 

to ‘work’, to reflect the 3-dimensionality which makes it possible to 

define them at all. The same also applies to the parameter sequence mass, 

space, time, whose algebraic structures effectively reflect those 

attributable to the components of charge, the only fundamental 3-

dimensional system with identifiable, i.e. independently conserved, 

components. It is this parallelism which makes it possible to create a 

closed parameter system with zero totality and in-built repetition. 

A fundamental difference between charge and space, as 3-dimensional 

parameters, is that the first is a conserved quantity, whereas the second is 

not. One aspect of the nonconservation of space is its rotation symmetry, 

the principle that the laws of physics are invariant to the arbitrary rotation 

of spatial axes, a property which leads clearly to space’s affine structure, 

the infinite number of possible resolutions of a vector into dimensional 

components. Clearly, this cannot apply to charge, whose conservation 

property must be exactly opposite. The axes of charge, that is, the 

electromagnetic, strong and weak types, must be rotation asymmetric: 

they cannot rotate into each other, and effectively constitute a non-affine 

‘space’. Charge type must be conserved. In fact, this principle is over and 

over again the message of particle physics. Despite the combined 

electroweak theory developed by Weinberg and Salam, and the proposed 

GUT unification of the electroweak with the strong force, the three 

nongravitational interactions each behave as if the others did not exist, 

and much of particle physics (lepton flavour conservation, baryon 

conservation, SU(2) weak isospin, nondecay of the proton, etc.) is simply 

a statement of some aspect of this fact. 

Now, the rotation symmetry of space, although an expression of 

nonconservation, is still responsible for a conservation law. This is a result 

of Noether’s theorem, which states that, for every global transformation 

preserving the Lagrangian density, there exists a conserved quantity. This, 

however, is effectively a result of the exactness of the oppositeness of 

conservation and nonconservation in the parameter group. Noether’s 

theorem has been taken, for instance, to imply that the translation 

symmetry of time is precisely identical to the conservation of energy, and 

that the translation symmetry of space is precisely identical to the 

conservation of linear momentum, while the additional rotation symmetry 

of 3-dimensional space becomes identical to the conservation of angular 

momentum. We can see how the conservation / nonconservation 

connection operates in the case of the first relation. Since energy is related 

to mass by the equation E = mc2, then the translation symmetry of time 

will also be linked to the conservation of mass. So, the nonconservation of 

time is responsible for the conservation of mass, exactly as the parameter 

table would suggest. 
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We can, however, extend the interpretation of Noether’s theorem even 

further by linking the conservation of the quantity of charge (of any type) 

with the nonconservation, or translation symmetry of space, and 

consequently with the conservation of linear momentum; and, by the same 

reasoning, we can make the conservation of type of charge linked to the 

rotation symmetry of space, and so to the conservation of angular 

momentum, as in the following scheme: 

 

 symmetry conserved linked 

  quantity  conservation 

 

 space linear value of 

 translation momentum charge 

 

 time energy value of 

 translation  mass 

 

 space angular type of  

 rotation momentum charge 

 

Using the last connection, we can propose that, if conservation of 

angular momentum is also taken to represent conservation of type of 

charge, then any symmetry-breaking which differentiates types of charge 

will also be applicable to the quantized angular momentum relevant to 

particle physics. Remarkably, this appears to be the case, as the three 

charge types (electric, strong and weak) seem to be responsible for 

conveying different aspects of angular momentum conservation, as though 

these were representable by different identifiable dimensions of the 

quantity. In the electric case it is the magnitude; in the strong case the 

direction; and in the weak case the orientation. Again, we recognise the 

symmetry-breaking pattern which is characteristic of 3-dimensional 

systems with identifiable components: the magnitude, or complexifying, 

term; the dimensionalizing term; and the ‘book-keeping’ term providing 

the orientation. It has nothing to do with mysterious physical 

characteristics possessed by these interactions: it is a result of 3-

dimensionality alone. 

 

9 Fermionic structures 

 

In section 6, we associated the SU(3) symmetry for the strong charge 

with the dimensional behaviour of the p operator. From the structure of 

the Dirac state vector, it is clear that this will be affected by the 

combination of the other two charges. However, these charges are actually 
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governed by quite separate symmetries, the weak charge being attached to 

iE and the electric charge to m, in the Dirac state, and we can expect that 

the pseudoscalar nature of iE and the scalar nature of m will determine the 

respective characters of the weak and electric forces. 

Now, the complex algebra determines that we have two sign options 

for iE, with two mathematical solutions, and consequently two helicity 

states; and it is, of course, the weak interaction that is concerned with this 

aspect of angular momentum conservation. However, the weak interaction 

has the special property of being confined to a single, left-handed, helicity 

state for fermions, with the right-handed state reserved for antifermions. 

This is entirely a result of the fundamental parameter group structure 

requiring mass-energy to be a continuum or non-dimensional quantity, 

and the consequent generation of a filled vacuum state; and it parallels the 

single physical (as opposed to mathematical) direction available to time. 

In principle, there is no physical state corresponding to –E, although 

the use of a complex operator ensures that –iE has the same mathematical 

status as iE. Charge conjugation, however, or reversal of the signs of 

quaternion labels, is permitted physically, because charge is dimensional. 

So the –ikE states can be interpreted as antifermion or charge-conjugated 

states; and the mass-energy continuum becomes a filled vacuum for the 

ground state of the universe, in which such states would not exist. The 

filled k or weak vacuum for the –iE fermion states, however, leads to a 

charge conjugation violation for the weak interaction, which manifests 

itself in the indifference of the interaction to the sign of weak charge, 

though not to the fermion / antifermion status. To preserve CPT 

symmetry, either parity or time-reversal symmetry must also be violated. 

In addition, when both w and e are present to affect p, the helicity state is 

no longer that of the pure w, and a mass term is generated, representing 

the scalar or magnitude part of the broken symmetry. 

The SU(2)L or ‘isospin’ symmetry for the weak interaction now 

follows from the very principle which ensures that the 3-dimensional 

symmetry between the charges is a broken one – the fact that its 

component axes are separately identifiable because the three charges are 

conserved independently of each other. The mutual independence of weak 

and electric charges creates the SU(2)L weak isospin: the weak component 

acts in the same way, whether or not charges are present. The two SU(2)L 

states define the weak interaction, with and without electric charge. If we 

take the mixing of E and p terms, or right-handed and left-handed 

components, as being also equivalent to the mixing of e and w charges, 

this mixing will not affect the weak interaction as such. So, the weak 

interaction will be simultaneously left-handed for fermion states and 

indifferent to the presence or absence of the electric charge, which 

introduces the right-handed element. 
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The weak interaction must behave in such a way that the two possible 

isospin states are indistinguishable. Conventionally, these two states are 

described by ‘the third component of weak isospin’, t3, by analogy with 

the SU(2) of spin, whose value is such that (t3)
2 = (½)2 in half the total 

number of possible states, that is, in the left-handed ones. The relevant 

quantum number for electric charge (Q) is determined by its absence or 

presence, and, for free fermions, takes the values 0 and –1, equivalent to 

the charges 0 and –e, the negative sign being purely historical in origin. 

So, once again, Q2 = 1 in half the total number of possible states (though 

this time it is a different half, including the right-handed ones), and 0 in 

the others. Using the standard argument of Georgi and Glashow (1974), it 

can be shown that, if the weak and electric interactions are described by 

some grand unifying gauge group, irrespective of its particular structure, 

then orthogonality and normalisation conditions require the parameter 

describing the mixing ratio, sin2W, to be precisely determined by Tr (t3
2) / 

Tr (Q2), which in this case must be 0.25. 

The ratio cannot apply only to free fermions, as the weak interaction 

must also be indifferent to the presence or absence of the strong charge, or 

the directional state of the angular momentum operator. This means that 

the same mixing proportion must exist also for quark states, and 

separately for each ‘colour’ phase, so that colour is not directly detectable 

through w. Assuming that the same weak isospin states can be created for 

one lepton-like colour or phase, that is with alternative Q values of –1 and 

0, or charge values of –e and 0, we now find that the only corresponding 

isospin states for the other colours that retain both the accepted value of 

sin2W = e2 / w2 in a system which allows the instantaneous existence of 

only one quark phase in three, are 1 and 0 (or e and 0). So, the charge 

variation 0 0 –e is taken against either an empty background or ‘electric 

vacuum’ (0 0 0) or a full background (e e e), so that the two states of weak 

isospin in the three colours become: 

 e e 0 

 0 0 –e  . 

In this interpretation, the weak interaction has again performed its 

‘book-keeping’ role, while the electromagnetic interaction takes on the 

required U(1) structure for a pure scalar magnitude by introducing a 

required phase. In more conventional terms, if SU(2) breaks parity, group 

structure and renormalizability require the incorporation of U(1). This 

also becomes significant in defining a Higgs ground state which is 

nonsymmetric and parity violating through identification of the one such 

state that SU(2) and U(1) have in common. The next section will show, 

however, that the origin of the phase term is evident in the solutions of the 

Dirac equations that preserve angular momentum conservation for single 

charges. 
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The symmetries, as defined in this section, effectively specify all 

possible fermion (that is, quark and lepton) states. Such states can be 

defined as all those which are indistinguishable from each other in terms 

of the weak interaction. Because of the 3-dimensional character of the 

strong interaction, quarks are not independent fermions, but merely phases 

of them. The phases are made explicit in the presence of the strong 

charge, in baryons and mesons, but are absent when the strong charge is 

absent, in free fermions or leptons. The weak and electric charges, unlike 

the strong charge, have no dimensional character, and only one phase, and 

so, where the strong charge is present, their phases cannot be aligned, as 

this would also confine the strong charge to a single phase. If the strong 

charge is absent, however, this alignment becomes necessary. This is the 

main distinction between quarks and leptons.  

In terms of the weak interaction, however, quarks ought to be 

indistinguishable from leptons. The emergence of fractional e charges in 

QED phenomenology can therefore be taken as an expression of the 

perfect gauge invariance of the strong interaction. In this case, the 3-

dimensional axes are not specifically identifiable and the symmetry 

remains unbroken. We may therefore propose that the charge structures 

for fundamental fermions are represented in the following tables, the left-

handed quarks being represented by A, B, C and the leptons by L: 

                 A             B 

   B G R    B G R 

   u  + e 1j 1j 0i    u  + e 1j 1j 0k 

   + s 1i 0k 0j    + s 0i 0k 1i 

   + w 1k 0i 0k    + w 1k 0i 0j 

            

   d  − e 0j 0k 1j    d  − e 0i 0k 1j 

   + s 1i 0i 0k    + s 0j 0i 1i 

   + w 1k 0j 0i    + w 1k 0j 0k 

            

 

                 C             L 

   B G R    e− e− e 
   u  + e 1j 1j 0k    + e 1j 1j 0j 

   + s 0i 1i 0j    + s 0k 0i 0i 
   + w 1k 0k 0i    + w 0i 0k 1k 

           e 

   d  − e 0j 0k 1j     − e 0i 0k 1j 

   + s 0i 1i 0k    + s 0j 0i 0i 

   + w 1k 0j 0i    + w 0k 0j 1k 
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The filled nature of the weak vacuum and the consequent violation of 

charge-conjugation symmetry for the weak interaction, however, requires 

yet another application of the principle of 3-dimensionality to the tables. 

The fact that the weak interaction is indifferent to the sign of the weak 

charge, and responds (via the vacuum) only to the status of fermion or 

antifermion means that we must, additionally, define two further 

generations, replacing w by –w, and introducing respective violations of 

parity and time-reversal symmetry. The three quark-lepton generations are 

a consequence of the 3-dimensionality of the C, P and T symmetries. 

It is possible to generate all the information incorporated in these 

tables using the angular momentum connection to provide a single unified 

representation for the entire set of charge structures for quarks and leptons 

(and their antistates) (Rowlands, 2003a): 

 

                  z.(i p̂a (bc – 1) + j (p̂b – 10m) + k p̂c (−)1g g)  . 

 

The quaternion operators i, j, k are respectively strong, electric and weak 

charge units; z is the spin pseudovector component defined in the z 

direction (here used as a reference); p̂a, p̂b, p̂c are each units of quantized 

angular momentum, selected randomly and independently from the three 

orthogonal components p̂x, p̂y, p̂z. These represent the phases of the 

respective direction, magnitude and orientation components of the angular 

momentum, determining the respective presence / absence of the units of 

strong, electric and weak charge. The other terms in the expression are 

merely codified ways of representing the divisions between fermions and 

antifermions, quarks and leptons, SU(2)L weak isospin, and the charge-

conjugation violation associated with the weak interaction. The significant 

aspect of the expression, for our purposes, is the way it links the 

conservation of charge type and angular momentum through a broken 3-

dimensional symmetry. 

The quark tables may be taken as an illustration of the fact that broken 

3-dimensional symmetries always incorporate unbroken ones. Thus, the 

tables are derived by assuming that an unbroken 3-dimensionality for 

colour phases lies within a broken one for charge, and can be derived, 

alternatively, by assuming that an irrotational 3-dimensional symmetry 

(charge conservation) is specified by a rotational one (quaternion algebra). 

(Interestingly, this alternative derivation forces the weak charge into 

adopting an ambiguous  state.) It would seem, from fundamental 

considerations, that the broken 3-dimensionality represented by the Dirac 

state or charge conservation will necessarily include an unbroken one, 

such as the rotational symmetry of the p operator or the quark system. It is 
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a characteristic, of course, of nonconserved or unbroken 3-dimensional 

structures that the dimensions themselves show the same structure, and 

this is the property responsible for the affine structure of space. In a sense 

it applies also to the non-vector terms in the broken symmetry. For 

example, m-p-E could be described as a 3-dimensional mass or energy 

and even as a 3-dimensional time (like -r-t), showing that 3-

dimensionality is, in some sense, inherent within the whole parameter 

system described by the fundamental algebra. Unlike that of the vector 

term, however, these symmetries are not unbroken. 

 

10 Spherically symmetric solutions of the nilpotent Dirac equation 

 

According to the conception of Noether’s theorem outlined in section 

8, it ought to be possible to identify solutions of the nilpotent Dirac 

equation which involve spherically-symmetric distance-dependent 

potentials V(r) as also being those which conserve angular momentum and 

therefore charge type. The procedure is relatively simple (Rowlands, 

2003a). Using the standard conversion of the  term to polar coordinates, 

with explicit introduction of fermionic spin (which is necessary only when 

we write  as an ordinary vector), we set up an equation of the form: 

 

              








k( )E + V(r)  + i








r
 + 

1

 r
  i 

j + ½

r
 + ijm   = 0 , 

 

where V(r) is the r-dependent potential, and 

 

                       = 








k( )E + V(r)  + i








r
 + 

1

 r
  i 

j + ½

r
 + ijm  F(r, t) 

 

and find the form of the phase term function F(r, t), which will make  or 

its amplitude nilpotent. In a sense, we can avoid using the equation 

altogether and simply define the state vector, in differential form, as being 

a nilpotent. This will then uniquely determine both amplitude and phase in 

a way which is unique to the nilpotent method. 

The simplest solution is found for the case where V(r) is inverse linear 

( 1 / r). This is characteristic of the electromagnetic or Coulomb 

interaction and emerges because of the inverse linear terms (due to 

spherical symmetry and spin) which are present in the i component of the 

state vector. A term of this kind in V(r) is the minimum required for 

spherical symmetry and no such solution can be found without its 

presence. In effect, this potential gives the scalar part of the interaction, 

and it results in the characteristic scalar phase or U(1) solution associated 
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with the electromagnetic interaction. The phase term of the wavefunction 

becomes 

                                   F = e–ar r 
 = 0

 ar , 

 

and the available energy levels can be calculated from 

 

          
E

 m
 = 









1 + 
(Ze2)2

( + 1 + n')2
–1/2 = 









1 + 
(Ze2)2

( (j + ½)2 – (Ze2)2 + n')2
–1/2 , 

 

which, for the case when Z = 1, becomes the standard ‘hydrogen atom’ 

solution. 

If we now take V(r) as a direct linear potential, combined with the 

inverse linear term which we know must be present, we obtain a solution 

with the characteristics of the strong interaction. The state vector has a 

functional component 

 

                          F =  exp (+– iEr  iq r2/2) r iqA – 1  . 

 

in which the imaginary exponential terms can be seen as representing 

asymptotic freedom, the exp (+– iEr) being typical for a free fermion. The 

complex r− term can be written as a phase,  (r) = exp ( iqA ln (r)), 

which varies less rapidly with r than the rest of . We can therefore write 

 as 

    =  
exp (kr +  (r))

r
 , 

 

where k = (+– iE  iq r/2). At high energies, where r is small, the first 

term dominates, approximating to a free fermion solution (asymptotic 

freedom). At low energies, when r is large, the second term dominates, 

with its confining potential  (infrared slavery). The Coulomb or inverse 

linear term, which is required to maintain spherical symmetry, is, as we 

would expect, the component which here defines the strong interaction 

phase,  (r), and this can be related to the directional status of p in the 

state vector. The direct linear term can be seen as equivalent to a force or 

rate of change of momentum which is constant with separation, and hence 

to a quantity which is determined by the vector nature of p. 

The solutions for direct linear and inverse linear potentials, however, 

appear to be special cases, and they correspond exactly to the special 

cases found in classical physics, where they are held to be characteristic of 

3-dimensional systems in steady state. In the case of the nilpotent Dirac 

equation, there appears to be only one other spherically symmetric 
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solution, and it appears to be the same for any potential depending on rn, 

where 2  n  –2. Any such potential, or one containing any combination 

of such terms, gives a harmonic oscillator solution, with energy levels 

 

                       E = – 
m

(j + ½)
 (½ + n')  , 

 

but only when combined with an inverse linear or Coulomb term of the 

opposite complexity, and the form of the solution is indifferent to the 

particular value of n chosen.  

The harmonic oscillator, of course, can be expressed in terms of the 

creation and annihilation operators which characterize the unique 

behaviour of the weak interaction in creating and annihilating fermion-

antifermion states, and it is entirely within our expectations of the 

principle of 3-dimensionality that one interaction should have this 

conjugative or ‘book-keeping’ role, after the others have dealt with the 

scalar magnitude and vector aspects. It corresponds to the position of the 

energy term in the Dirac operator which only has meaning in connection 

with fermion / antifermion, right- or left-handed, + or –; and relates to the 

fundamental process of conservation or conjugation. (This is why the 

weak interaction responds only to the status of fermion / antifermion and 

not to the sign of weak charge.) And, of course, values of n different from 

1 or –1 will be expected from an interaction which is invariably dipolar, 

as the weak interaction certainly is. The dipolarity is a characteristic 

expected of a state determined by a pseudoscalar or imaginary quantity, 

with a ± mathematical duality, and this pseudoscalar aspect appears to be 

reinforced by the relative complexity of the rn and inverse linear potential 

terms required for this solution. It is the same dipolarity as is found in the 

energy terms in the Dirac equation and in the time term in time-reversal 

symmetry. 

It would seem from our analysis that if we take the Coulomb terms 

relating to all three interactions to be an expression of the real scalar 

magnitudes of the charges with which they are associated, then we may 

suppose that the additional potentials required by the ‘strong’ and ‘weak’ 

solutions are expressions of the respective vector and pseudoscalar terms 

associated, in the Dirac equation, with their charges. It would also seem 

that the Dirac equation produces three spherically symmetric, i.e. 3-

dimensional, solutions because of its fundamental structural basis in a 3-

dimensional object with individually identifiable components. 
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11 ‘4-dimensional’ space-time 

 

Minkowski famously said about space and time, after his introduction 

of 4-vectors (1909): ‘From now on, space by itself, and time by itself, are 

destined to sink into shadows, and only a kind of union of both to retain 

an independent existence’. Of course, space and time still are connected, 

but the connection is not privileged as Minkowski believed it to be. The 

connection between space and time is no more significant than that 

between space and mass and mass and time, or all these parameters and 

charge. And there is no fundamental 4-dimensional link between space 

and time. There is, however, a 3-dimensional one! 

The space-time 4-vector has always run into the problem that one 

component is physically different from all the others, and it is essentially 

on account of these differences that the problem of wave-particle duality 

developed. Wave theories made space timelike (i.e. continuous) while 

particle theories made time spacelike (i.e. discrete) to fit the two 

parameters into a single physical model or dimensional structure. The 

dichotomy even manifested itself in nonrelativistic quantum mechanics, 

with Schrödinger’s timelike theory opposed to Heisenberg’s spacelike 

one. However, the problem, in fundamental terms, is that it cannot be 

done. The true picture is restored in the Dirac nilpotent theory which is 

neither wavelike nor timelike, but incorporates elements from both 

Schrödinger and Heisenberg. 

What this theory tells us is that space and time are not a 4-vector. We 

do not add a pseudoscalar to a pure vector, because each term is 

premultiplied by a gamma factor or a quaternion before addition. Space 

and time are actually two dimensions of a 3-dimensional structure, whose 

third dimension is a mass-related term, the ‘proper time’, which is of 

course premultiplied by the remaining quaternion. The ‘proper time’ is not 

a time term; it is not a pseudoscalar. It gets its name simply from the fact 

that it becomes numerically equal to the time variable if we equate the 

space component to zero. We could just as easily describe the actual time 

variable as the ‘proper space’ in investigating systems, such as photons, in 

which the proper time (or rest mass) becomes zero. 

Of course, when we take a scalar product, as we invariably do in 

classical special relativity, the quaternion terms disappear and time acts, 

to all intents and purposes, as an imaginary fourth dimension of space, 

fulfilling the role of pseudoscalar needed to complete a mathematical 

vector theory. However, it is important that it is not exactly that 

pseudoscalar, and no physical quantity exists which can fill this role. The 

algebraic structure which we have created as a representation of physical 

‘reality’ has no place for 4-dimensional physical quantities. It forces us 

over and over again into a 3-dimensional pattern. Our quantized, i.e. 3-
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dimensional, picture denies us the opportunity of representing time as a 

fourth dimension, denying it status as a physical observable. In a 3-

dimensional theory, time occupies the place of the ‘book-keeper’, as 

energy does in the Dirac state, the quantity which preserves conservation 

or conjugation, but adds only the information of + or –. We only know the 

direction of the sequence that preserves causality, not a measure of time in 

the same sense as we measure space, in the same way as energy only tells 

us whether the system is a fermion or antifermion. This fact is well known 

as a stumbling block to proponents of a quantum theory of gravity, which 

automatically incorporates time as a physical fourth dimension. It is likely 

to prove equally damaging to string theories in which a spatio-temporal 

dimensionality is automatically assumed to be possible. 

The fact that the number system we use in mathematics has a 3-

dimensional origin is of profound significance. It means that we can’t 

arbitrarily choose the number of dimensions we apply to quantities like 

space and time without contradicting the principles on which these 

concepts, and related ones, such as quantization and conservation, were 

founded. The number of dimensions is not negotiable once we have 

decided to use the fundamental parameter group and the number system 

which emerges from 3-dimensionality. Only at the level of classical 

approximation can we even contemplate any interference in the number of 

dimensions which nature appears to have thrust upon us. 

 

Appendix I: Table of 3-dimensional systems with identifiable 

components 

 

 pseudoscalar quaternion scalar   (1) 

 scalar vector pseudoscalar  (2) 

 mass space time 

 m p E 

  r t 

 e s w 

 C P T 

 j i k 

 magnitude direction orientation 

 complexification dimensionalization conjugation 

 complexification dimensionalization conservation 

 

Here, the ‘dimensional’ term is in the second column and the ‘book-

keeping’ term in the third. (1) = (2)  i and (2) = (1)  i. It may be that we 

can also include momentum-angular momentum-energy and space 

translation-space rotation-time translation. The last row refers to the 
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properties of the parameter group, whose fundamental 3-dimensionality is 

displayed in the diagrams included in Rowlands (2003b). 

 

Appendix II: Quantum gravitational inertia 

 

The principle that 3-dimensionality is the sole source for discreteness 

in physics, and that no other dimensionality exists at the fundamental 

level has consequences for the development of a mathematical theory of 

quantum gravity, or, in more accurate terms, a mathematical theory of 

quantum gravitational inertia. According to the argument presented here, 

there is no fundamental 4-D, and, though there is a mathematical object 

called a 4-vector, there is no physical realisation of it, except in the 

classical approximation. The key structure then becomes the 3-

dimensional nilpotent structure, variously represented by ikE + ip + jm 

and ikt + ir + j, which is both fully quantum and fully relativistic, and the 

3-dimensionality of the structure is essential to its complete quantization. 

There is no true 5-dimensionality in the structure, as we might at first 

think, because the nonconserved 3-dimensionality of the p and r terms is 

of a different nature to the conserved 3-dimensionality of k, i and j, 

though we can, if we choose, relate the nilpotent information in ikE + ip + 

jm and ikt + ir + j, as defining the ten ‘degrees of freedom’ concerning 

any fermionic state which lie at the basis of the 10- and 11-dimensional 

superstring and supermembrane theories. The possibility of establishing 

such a connection, and the outline method of achieving it, are discussed in 

Rowlands (1998) and Rowlands et al (2001). The Grassmann algebra 

linking the nilpotent fermionic states (which is equivalent to the 

conventional Hilbert space) would provide the so-called ‘eleventh 

dimension’. However, although it is worth showing that this is possible, it 

is not worth pursuing in detail, as there is no point in developing a more 

limited superstructure, whose ultimate purpose is to provide a route to a 

more fundamental basis, when that basis is already available. Thus, 

although various larger algebraic structures, for example octonions and 

even classical Minkowski space-time, have been shown to produce some 

of the results that are required in a fundamental theory, this is always at 

the price of producing others which are invalid, and it would seem that the 

3-dimensional pattern is the one that nature prefers, and that in identifying 

this as the true fundamental context we are likely to discover more 

universally valid results. 

We can now, for example, immediately relate ikt + ir + j to the 

discrete gravity theory presented in Koberlein (2001), which is based on 

the fact that a single object (particle or field) at two points in Minkowski 

space-time (represented by the 4-vector x) must satisfy the causality 

constraint 2 + x2 = (ikt + ir + j)2 = 0, which defines a hypercone for 
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the object. ‘Extended causality’ then applies when we shift  and x by 

infinitesimal steps d and dx. Using Koberlein’s procedure, we can then 

apply a massless scalar field to obtain a discrete field equation, and a field 

source represented by a scalar charge to generate a ‘graviton’-like object 

and a metric for a discrete gravitational field. It is clear that if we apply 

the quantum ikt + ir + j for a Dirac particle in the appropriate places in 

place of (x, ), then we can produce a fully quantum version of this 

discrete gravity, with the discreteness referring to an interaction between 

fermions as discrete particles defined by a 3-D Dirac nilpotent. 

Significantly, the discrete theory also dispenses with the transverse 

directions, to create a 1 + 1 space-time, paralleling the fact that a quantum 

Dirac particle, with conserved charge (the kind of object to which 

quantum gravity or quantum gravitational inertia will apply), requires 

only r, and a single well-defined direction of spin, rather than the classical 

x, y, z. 

It is already apparent, from previous quantum gravity theories, that 

any attempt at quantizing 4-D space-time is a lost cause, because time is 

not an observable in quantum mechanics as it is in classical relativity 

theory; it merely plays the ‘book-keeper’ role of specifying the direction 

which preserves causality. This means that, for a fully quantized theory, 

we need a metric other than the 4 × 4 representation using x, y, z, t, with 

added curvature, which is used in classical general relativity. The obvious 

one that suggests itself is a 3 × 3 representation, with diagonal terms ikt, 

ir, j, in the absence of the curvature resulting from a gravitational field. 

This formalism would have the distinct advantage of being a natural 2 + 1 

theory of gravity (the 2 representing the ‘real’ terms r and , and the 1 the 

imaginary term it), and such theories are already known to be 

renormalizable, unlike those with a higher number of dimensions. A 

preliminary investigation of the method suggests that it works exactly as 

expected. 

Now, Bell et al have presented a preliminary approach to a QED-like 

quantum gravity (2002) by using a quaternionic mapping of the four 

solutions of the Dirac equation onto a space which, without curvature, is 

equivalent to that provided by the usual 4 × 4 representation of the 

Lorentzian metric. The natural result of this mapping is the production of 

the Bohr-Sommerfeld orbitals for the electron in a scalar electrostatic 

potential in a purely classical way, thus providing a ‘natural’ generation of 

space-time curvature, which can be extended when gravitational curvature 

terms are directly applied to the metric of the four Dirac solutions (Bell et 

al,  2000). 

In terms of the theory presented here, of course, any version of the 4 × 

4 Lorentzian metric will be neither fully quantized nor fully relativistic, 
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but the 3 × 3 ‘quantum metric’, based on ikt, ir, j, will fulfil both these 

criteria, and, in the spirit of Bell et al (though using a different set of 

dimensional quantities), can be mapped onto a ‘phase space’ metric based 

on ikE, ip, jm, which gives the full information about the Dirac state, and 

produces the full Dirac ‘atom’ solution and U(1) QED-type behaviour, 

with a corresponding photon-like mediating boson, merely on the 

assumption of spherical symmetry and the multivariate vector nature of 

the spin term p (or, equivalently, conserved charge) (Rowlands, 1992, 

1994). A purely ‘Lorentzian’ metric would not, of course, automatically 

include spin, unless the vector term was assumed to be multivariate, but, 

more seriously, would exclude the fundamental nilpotent relations 

between the parameters space, time, mass and charge which are 

responsible for both quantization and relativity. 

The phase space metric has the direct advantage that it can be obtained 

directly from the ‘quantum metric’ (and vice versa) via a Fourier 

transform, and we can thus imagine the quantum metric as being 

generated by and carried along with the state which defines it. Evidence 

for ‘curvature’ (i.e. the effect of a gravitational field on the inertial metric) 

can then be seen in the functional term through which this transformation 

occurs – which will be the usual complex exponential for a free particle, 

but distorted in the presence of a field or ‘curvature’. Since the Dirac state 

directly determines the nature of the vacuum which responds to it, this 

process will be equivalent to the Davies-Unruh effect, where a 

nonaccelerating system sees a plane-wave version of the zero-point field 

but an accelerating system sees a distorted one. 

In the case of phase space, the reduction of the metric to 3 × 3 reflects 

the fact that, in the nilpotent formulation, the specification of four separate 

solutions becomes redundant information in the Dirac spinor, because 

knowledge of the signs of ikE and ip in the first term automatically gives 

us the entire pattern which follows – this is equivalent to separate 

specification of x, y and z being redundant in the quantum context. In 

addition, if the basic metric is 3 × 3, rather than 4 × 4, the mediator 

responsible for any curvature terms becomes spin 1 (as Bell et al require 

for a renormalizable theory), rather than spin 2. 

The need for a spin 1 mediator and QED-like theory in ‘quantum 

gravity’ has been discussed in many previous publications. There, it has 

been suggested that the continuity of mass-energy, the filled vacuum, the 

Higgs field, and the need for instantaneous correlation between Dirac 

states, together with the fact that energy does not actually move (as 

opposed to the form of its realisation in connection with a discrete state), 

require an instantaneous gravitational force, which is undetectable by 

direct observation, and only ever observed through the c-dependent 

inertial reaction on discrete fermionic or bosonic states. Being repulsive, 
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this force requires a mediator of spin 1. In this context, we may note that 

the nilpotent representation significantly makes the Dirac state identical to 

its own gravitational vacuum, at 1(ikE + ip + jm), whereas the vacuum 

responses to the weak, strong and electric charges can be represented, 

respectively, by k(ikE + ip + jm), i(ikE + ip + jm), and j(ikE + ip + jm). 

The standard mathematical representation of the gravitational force 

incorporates no information relating to speed, but the description of 

gravity as an undetectable property of the vacuum would require it to be 

instantaneous. The c-dependence of the inertial reaction, however, 

determines that, though linear and renormalizable, this force will itself be 

affected by gravity, giving rise to the ‘curvature’ terms in the metric 

tensor, as in general relativity. It is, however, ‘curvature’ of the metric for 

inertia, not for gravity, which has no metric. Previous work has shown 

that, if we equate the inertial reaction numerically with the undetectable 

gravitational attraction (so defining an equivalence principle), we justify a 

form of Mach’s principle, and obtain gravomagnetic effects, redshift, 

acceleration of the redshift, and perhaps even the cosmic microwave 

background radiation (Rowlands, 1992, 1994, 2002). In the simplest case 

of ‘curvature’, provided by a point source, we will generate the 

Schwarzschild metric and a factor 4 in the gravomagnetic equations by 

comparison with those for QED. This factor (incorporating 2 for space 

‘contraction’ and 2 for time ‘dilation’, if we adopt the usual convention of 

making c constant, is evident in the factors of 2 which appear in the mass 

and field terms in the Schwarzschild solution presented by Bell et al 

(2002). 
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