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Symmetry is everywhere in Nature and has a particularly significant role in physics at the most fundamental level. 

Here, we propose that the origin of all the fundamental symmetries is in a Klein-4 group structure that connects the 

fundamental parameters mass, time, charge and space. The algebras associated with these parameters emerge in a 

sequence which first generates real numbers, then complex numbers, quaternions and multivariate vectors. The 

combined algebra has a special significance in being identical to that of the Dirac equation of relativistic quantum 

mechanics. This is the equation that applies to the point-like fermion, the most fundamental physical state. Many other 

symmetries and the fundamental symmetry-breaking that occurs between the four physical interactions can be seen to 

emerge from this foundational symmetric structure. 
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Introduction 

We are not very good observers – science is a struggle for us. But we have developed one 

particular talent along with our evolution that serves us well. This is pattern recognition. This is 

fortunate, for, everywhere in Nature, and especially in physics, there are hints that symmetry is the 

keв to Нeeper unНerstanНТnР. χnН pСвsТМs Сas sСoаn tСat tСe sвmmetrТes are often ‘broken’, tСat 

is disguised or hidden. A classic example is that between space and time, which are combined in 

relativity, but which remain obstinately different. 

Some questions are relevant here. Which are the most fundamental symmetries? Where 

does symmetry come from? How do the most fundamental symmetries help to explain the subject? 

Why are some symmetries broken and what does broken symmetry really mean? Many symmetries 

are expressed in some way using integers. Which are the most important? 

We may begin our explanation with a philosophical starting-point. The ultimate origin of 

symmetry in physics is zero totality. The sum of every single thing in the universe is precisely 

nothing. Nature as a whole has no definable characteristic. Zero, in fact, is the only logical starting-

poТnt. If аe start from anваСere else аe Сave to eбplaТn Тt. Гero Тs tСe onlв ТНea аe МoulНn’t 

conceivably explain. 

To go from there it is convenient to give a semi-empirical answer, though it is possible to 

do it more fundamentally. The major symmetries in physics begin with just two ideas, duality and 
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anticommutativity, and there are only two fundamental numbers or integers, 2 and 3.  Everything 

else is a variation of these. In effect, anticommutativity is like creation, duality is like conservation. 

We can now start with a symmetry that is not well known, but which appears to be foundational 

to physics. This is between the four fundamental parameters 

 

 SPACE TIME MASS CHARGE 

 

Here, mass has the more expansive meaning incorporating energy, and charge incorporates 

the sources of all 3 gauge interactions (electric, strong and weak). The symmetry-breaking between 

the charges is an emergent property, which we will show later emerges from algebra. 

It is possible to represent the properties of these parameters symmetrically in terms of a Klein-4 

group: 

 space nonconserved real anticommutative 

 time nonconserved complex commutative 

 mass conserved real commutative 

 charge conserved complex anticommutative 

 

Many physical, and even some mathematical, facts, not fully understood, may be seen 

principally as consequences of this symmetry. They include: 

  

 TСe МonservatТon laаs anН σoetСer’s tСeorem 

 The irreversibility of time 

 The unipolarity of mass 

 Why like charges repel but masses attract 

 The need for antistates 

 Lepton and baryon conservation and nondecay of the proton 

 Standard and nonstandard analysis, arithmetic and geometry 

 Гeno’s paradox 

 The irreversibility paradox 

 Gauge invariance, translation and rotation symmetry 
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Representations of the parameter group 

One of the key aspects of the exactness of the symmetry between the parameters is that 

space, to be truly symmetrical to charge in its 3-dimensionality, is not just an ordinary vector, but 

one which has the properties of a Clifford algebra: 

  

 i    j   k  vector 

 ii  ij   ik  bivector pseudovector       quaternion 

 i  trivector pseudoscalar       complex 

 1  scalar 

 

The space-time and charge-mass groupings then become exact mirror images, 3 real + 1 

imaginary against 3 imaginary + 1 real. 

The vectors of physics are what Hestenes called multivariate vectors [1], isomorphic to 

Pauli matrices and complexified quaternions, with a full product 

 

. i  ab a b a b   

 

and a built-in concept of spin (which comes from the i a × b term). Hestenes showed, for example, 

that if we used the full product  for a multivariate vector  instead of the scalar product . 

for an ordinary vector , аe МoulН obtaТn spТn ½ for an eleМtron Тn a maРnetТМ fТelН from tСe 

nonrelativistic ScСröНТnРОr ОquatТon.  

 

In the parameter group, space and time become a 4-vector with three real parts and one 

imaginary, by symmetry with the mass and charge quaternion, with three imaginary parts and one 

real. 

    space          time           charge          mass 

   ix jy kz       it       is je kw    1m 

 

Vectors, like quaternions, are also anticommutative. 

The group properties can be represented very simply using algebraic symbols for the 

properties / antiproperties: 

 

 mass   x     y   z 
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 time –x  –y   z 

 charge   x  –y –z 

 space –x     y  –z 

 

In algebraic terms, this is a conceptual zero. 

The symmetry may be assumed to be absolutely exact – no exception to this rule has ever 

been found in forty years [2-7]. And this condition can be used to put constraints on physics to 

derive laws and states of matter. We can also develop a number of representations, which not only 

show the absoluteness of the symmetry, but also the centrality to the whole concept of the idea of 

3-dimensionality. A perfect symmetry between 4 parameters means that only the properties of one 

parameter need be assumed. The others then emerge automatically like kaleidoscopic images. It 

is, in principle, arbitrary which parameter we assume to begin with, as the following visual 

representations will show. The representations also suggest that 3-dimensionality or 

anticommutativity is a fundamental component of the symmetry. 

In the colour representation, space, time, mass and charge, occupy concentric circles, 

divided into sectors suggesting the 3 properties / antiproperties. The properties (say, Real, 

Nonconserved, Discrete) can be by primary colours (say, Red, Green, Blue, or R, G, B), and the 

‘antТpropertТes’ (ImaРТnarв, ωonserveН, ωontТnuousΨ bв tСe Мomplementarв seМonНarв ones 

(Cyan, Magenta, Yellow, or C, M, Y). All of these choices are arbitrary, and we can, for example, 

as in the second figure, reverse the representation. Only the overall pattern is fixed. 

 

    

In any version of the representation, the total colour in each sector adds to white, 

representing zero. 
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Alternatively, we can make a direct Cartesian plot of the x, y and z and –x, –y, –z algebraic 

representations of properties and antiproperties from an origin at the centre of a cube to four of its 

corners. As in the colour representation, there is a dual version (here depicted using dotted lines), 

which can also be seen as a depiction of a dual group to that of the parameters with one of the 

properties / antiproperties reversed. Such a dual group emerges in the representation of the 

fundamental parameters in the Dirac equation.  

 

                                             
 

A third representation would place the parameters at the four faces or vertices of a regular 

tetrahedron, whose edges take on the primary / secondary colours as shown to stand for the six 

properties / antiproperties. There is, again, a built-in duality in this representation, as there is in the 

others. 
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Algebra and the parameters 

What is striking about the parameters and their properties is that they are purely abstract. 

They can be reduced, in effect, to pure algebra. Real / Imaginary and Commutative / 

Anticommutative are obviously so. But Conserved / Nonconserved can also be shown to be purely 

algebraic. They also each have their own algebra, which serves to define them. TheТr ‘pСвsТМal’ 

properties come solely from this algebra. 

 

 Mass 1 scalar 

 Time   i pseudoscalar 

 Charge  i  j  k quaternion 

 Space   i  j  k vector 

 

TСe fТrst tСree are subalРebras of tСe last, anН МombТne to proНuМe a versТon of Тt, let’s saв 

i j k . In other аorНs tСeв are equТvalent to a ‘veМtor spaМe’, an ‘antТspaМe’ to Мounter i j k . We see 

why space appears to have a privileged status. It has 3 subalgebras: 

 

bivector / pseudovector / quaternion, composed of: 

  

 ii  ij   ik  bivector  pseudovector quaternion 

 1 scalar 

  

trivector / pseudoscalar / complex, composed of: 

  

 i trivector pseudoscalar complex 

 1 scalar 
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and scalar, with just a single unit: 

  

 1 scalar 

 

The three parameters other than pace produce a combined vector-like structure, even 

though there is no physical vector quantity associated with them. 

 

 mass scalar  1 

 time pseudoscalar i 1 

 charge quaternion  i j k 1 

  pseudovector ii ij ik 1 

  bivector 

 COMBINED vector i j k  i j k i   1 

 STRUCTURE  i j k  ii ij ik i  1 

 

This is what we will call vacuum space. 

We now have another symmetry, leading to zero totality:  

 

 Space   Everything else 

    Mass 1  scalar 

    Time   i  pseudoscalar 

    Charge  i  j  k quaternion 

    ------------------------------------------------- 

 Space   i  j  k vector Antispace   i  j  k  vector 

    Vacuum space 

 

We note that the algebras of charge, time, mass are subalgebras of vector algebra. It seems 

that, though all the parameters are equivalent in the group structure, they also produce a 

mathematical hierarchy, which suРРests an ‘evolutТonarв’ struМture Тn a loРТМal, not a tТme 

sequence. This evolution can, in fact, be derived, and applied much more generally as a 

fundamental information process. It seems to operate in mathematics, computer science, chemistry 

and biology, as well as in more complex aspects of physics.  
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We can also derive many aspects of the complexity directly. This is by packaging the 

physical information produced by combining the information from the individual algebras: 

 

 Time  Space  Mass  Charge 

 i i  j  k 1  i  j  k 

 pseudoscalar vector scalar quaternion 

 

Working out every possible combination of the four parameters and their 8 units requires 

64 combined units. This turns out to be the algebra of the Dirac equation, the relativistic quantum 

mechanical equation of the fermion, the only true fundamental object that we know must exist. 

There 64 possible products of the 8 units are given by: 

 

 ሺ±ͳ, ± i) 4 units 

 ሺ±ͳ, ± iሻ × ሺi, j, k) 12 units 

 ሺ±ͳ, ± iሻ × ሺi, j, k) 12 units 

 ሺ±ͳ, ± iሻ × ሺi, j, k ሻ × ሺi, j, k) 36 units 

 

The + and – versions of the units: 

 

 i  j* k ii ij ik* i 1 

 i  j  k ii ii ik 

 ii*  ij  ik iii iij iik 

 ji*  jj  jk iji ijj ijk 

 ki*  kj  kk iki ikj iki 

 

form a group. The simplest starting point for a group is to find the generators. These are the set of 

elements within the group that are sufficient to generate it by multiplication. Here they are marked 

with an asterisk. 

Since vectors are complexified quaternions and quaternions are complexified vectors, we 

obtain an identical algebra if we use complexified double quaternions: 

 

 i  j* k ii ij ik* i 1 

 i  j  k ii ii ik 
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 ii*  ij  ik iii iij iik 

 ji*  jj  jk iji ijj ijk 

 ki*  kj  kk iki ikj ikk 

 

There is also a double vector version: 

 

 i  j* k ii ij ik* i 1 

 i  j  k ii ii ik 

 ii*  ij  ik iii iij iik 

 ji*  jj  jk iji ijj ijk 

 ki*  kj  kk iki ikj iki 

 

The introduction of symmetry-breaking 

We started with eight basic units, but, by the time that we have worked out all the possible 

combinations of vectors, scalars, pseudoscalars and quaternions, we find that the Dirac algebra has 

32 possible units or 64 if you have + and – signs. This group of order 64 requires only 5 generators. 

There are many ways of selecting these, but all such pentad sets have the same overall structure. 

However, the most efficient way of generating the 2  32 is to start with five composites, rather 

than eight primitives. 

All the sets of 5 generators have the same pattern, as we can see by splitting up the 64 units 

into 1, –1, i and – i, and 12 sets of 5 generators, each of which generates the entire group: 

 

1  i     –1   –i 

ii  ij ik  ik  j  –ii   –ij  –ik  –ik –j 

ji  jj jk  ii k  –ji   –jj  –jk  –ij –i 

ki  kj kk  ij  i  –ki   –kj  –kk  –ij –i 

iii  iij  iik  ik  j  –iii   –iij   –iik  –ik  –j 

iji  ijj ijk   ii  k  –iji   –ijj  –ijk   –ii  –k 

iki  ikj ikk   ij  i  –iki   –ikj  –ikk   –ij  –i 

 

The creation of any set of 5 generators requires symmetry-breaking of one 3-D quantity. 

From the perfect symmetry of 
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 i i     j     k 1 i  j     k 

 

we rearrange to produce: 

 

 i i     j     k 1 

 i   j      k 

 

and finally: 

 ik  ii      ij      ik 1j 

 

The symmetry-breaking has an impact on the nature of the parameters involved. If we You 

have to break the symmetry of one space or the other, of i, j, k or i, j, k. Since space is nonconserved 

and, therefore, rotation symmetric, we choose this to be charge. So, beginning with time, space, 

mass and charge, we may take one of each of i, j, k of charge on to each of the other three. 

Physically, to create the generators we have to distribute the charge units onto the other parameters. 

TСТs Мreates neа ‘МompounН’ (anН ‘quantТzeН’Ψ pСвsТМal quantТtТes, аСТМС, usТnР arbТtrarв names 

anН sвmbols, аe Мall ‘enerРв’, ‘momentum’ anН ‘rest mass’. So 

 

 Time  Space  Mass  Charge 

 i i  j  k 1  i  j  k 

become 

 Energy Momentum Rest Mass 

 i ii ji ki 1j 

 E px py pz m 

 

The combined object is nilpotent, squaring to zero, because 

       0       
x y y x y y

i E ip ip ip jm i E ip ip ip jm        k i j k k i j k  (1) 

 

Аe Мan ТНentТfв tСТs as EТnsteТn’s relatТvТstТМ enerРв-momentum equation 

 

2 2 2– –  ͲE p m    
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or, in its more usual form, 

 

2 2 2 2 4– –  ͲE p c m c   

 

Nilpotent quantum mechanics 

The Dirac equation simply quantizes the nilpotent equation, using differentials in time and 

space, operating on a phase factor, for E and p. So (1) becomes 

 

  ( ) 0i Eti m i E m e
t

         
p.rpk i j k i j  

 

by simultaneously applying nonconservation and conservation. Here, we note there are four sign 

variations in E and p. The fact that this is reduced by nilpotency from eight leads to another 

symmetry-breaking. We lose a degree of freedom, leading to chirality. 

Written out in full the four components are: 

 

  (ikE + ip + jm)  fermion spin up  

  (ikE – ip + jm)  fermion spin down 

  (–ikE + ip + jm)  antifermion spin down  

  (–ikE – ip + jm)  antifermion spin up   (2) 

 

The signs are, of course, intrinsically arbitrary, but it is convenient to identify the four states 

by adopting a convention.  

The spinor propertТes of tСe alРebra stТll СolН, even аСen аe Нon’t use a matrТб 

representation, and is a 4-component spinor, incorporating fermion / antifermion and spin up / 

down states. We can easily identify these with the arbitrary sign options for the iE and p (or .p) 

terms. This is accommodated in the nilpotent formalism by transforming (ikE + ip + jm) into a 

column vector with four sign combinations of iE and p, which may be written in abbreviated form 

as ( ikE  ip + jm). Using an accepted convention, this can be either operator or amplitude. The 

symmetry between operator and amplitude is another leading to 0. 
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    0i E i jm i E i jm     k p k p   

 

gives us both relativity and quantum mechanics – a version which is much simpler and seemingly 

more powerful than conventional quantum mechanics. 

In quantum mechanics we take the first bracket as an operator acting on a phase factor. The 

E and p terms can include any number of potentials or interactions with other particles. Squaring 

to 0 gives us the Pauli exclusion principle, because if any two particles are the same, their 

combination is 0. In tСТs form, аe Нon’t even neeН an equatТon, just an operator of tСe form ( ikE 

 ip + jm) because the operator will uniquely determine the phase factor needed to produce a 

nilpotent amplitude. Rather than using a conventional form of the Dirac equation, we find the 

phase factor such that, using the defined operator, 

  

(operator acting on phase factor)2 = amplitude2 = 0. 

  

If the operator has a more complicated form than that of the free particle, the phase factor 

will, of course, be no longer a simple exponential but the amplitude will still be a nilpotent. 

The same operation which gives us energy, momentum, and rest mass also gives us the broken 

symmetry between the 3 charges 

 

 i ii ji ki   1j 

 weak strong  electric 

 

which now adopt the characteristics of the mathematical objects they are connected to, and the 

corresponding group symmetries: 

 

 pseudoscalar vector  scalar 

 SU(2) SU(3)  U(1) 

 

The connections can be demonstrated with full rigour. 

A particular subalgebra of the 64-part algebra creates a symmetry between the two spaces 

which remains unbroken. This is the H4 algebra, which can be obtained using coupled quaternions, 

with units 1, ii, jj, kk. The result is a cyclic but commutative algebra with multiplication rules 

ii ii = jj jj = kk kk = 1 
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ii jj = jj ii = kk 

jj kk = kk jj = ii 

kk ii = ii kk = jj 

 

The same algebra can be achieved with the negative values of the paired vector units 1, –

ii , –jj , –kk . (1 is equivalent here to –ii .) This time we have: 

 

(–ii) (–ii) = (–jj) (–jj) = (–kk) (–kk) = 1 

(–ii) (–jj) = (–jj) (–ii) = (–kk) 

(–jj) (–kk) = (–kk) (–kk) = (–ii) 

(–kk) (–ii) = (–ii) (–kk) = (–jj) 

 

If we use the symbols I  = ii = –ii , J = jj = –jj , K  = kk = –kk , 1, to represent this algebra, 

we can structure the relationships in a group table: 

 

 * 1 I J K  

 1 1 I J K  

 I I 1 K J  

 J J K 1 I  

 K K J I 1  

 

The group is a Klein-4 group, exactly like the parameter group. 

All the standard aspects of spin and helicity are easily recovered with nilpotent quantum 

mechanics (NQM). This means that it is possible to find a spinor structure which will generate the 

NQM state vector. A set of primitive idempotents constructing a spinor can be defined in terms of 

the H4 algebra, constructed from the dual vector spaces: 

 

    
ͳ – – –kk  /  4 ͳ –  /  4 ͳ –  /  4ͳ –kk  /  4

ii jj

ii jj kk

ii jj kk

ii jj

 
 
 
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As required the 4 terms add up to 1, and are orthogonal as well as idempotent, all products 

between them being 0. The same terms can be generated using coupled quaternions rather than 

vectors: 

    
1  /  4ͳ – –  /  4ͳ – –  /  4ͳ – –  /  4

ii jj kk

ii jj kk

ii jj kk

ii jj kk

  





  

TСe ‘spaМes’ Тn tСe spТnor struМture are notablв Мompletely dual. The orthogonality 

condition effectively creates a quartic space structure with zero size, a point-particle. 

 

Vacuum 

Another way of looking at Pauli exclusion leads to another symmetry. Here, we say that 

Nature represents a totality of zero, and if you imagine creating a particle (with all the potentials 

representing its interactions) in the form 

 

 i E i jm  k p  

 

then you must structure the rest of the universe, so that it can be represented by  

 

 – i E i jm  k p  

 

TСe nТlpotent formalТsm ТnНТМates tСat a fermТon ‘МonstruМts’ Тts own vacuum, or the entire 

‘unТverse’ Тn аСТМС Тt operates, anН аe Мan МonsТНer tСe vaМuum to be ‘НeloМalТseН’ to tСe eбtent 

tСat tСe fermТon Тs ‘loМalТseН’. 

We can consider the nilpotency as defining the interaction between the localised fermionic 

state and the delocalised vacuum, with which it is uniquely self-dual, the phase being the 

mechanism through which this is accomplished. We can also consider Pauli exclusion as saying 

tСat no tаo fermТons Мan sСare tСe same vaМuum. TСe ‘Сole’ left bв МreatТnР the particle from 

nothing is the rest of the universe needed to maintain it in that state. We give it the name vacuum.  

So the vacuum for one particle cannot be the vacuum for any other. 
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Аe Мan also tСТnk of tСe Нual ‘spaМes’ representeН bв i, j, k and i, j, k as combining together 

to produce zero totality in a point particle with zero size. It is the only way we can produce discrete 

poТnts Тn spaМe. TСe nТlpotent formalТsm ТnНТМates tСat a fermТon ‘МonstruМts’ Тts oаn vaМuum, or 

tСe entТre ‘unТverse’ Тn аСТМС Тt operates, anН аe Мan МonsТНer tСe vaМuum to be ‘НeloМalТseН’ to 

tСe eбtent tСat tСe fermТon Тs ‘loМalТseН’. Аe Мan МonsТНer tСe nТlpotenМв as НefТnТnР tСe ТnteraМtТon 

between the localised fermionic state and the delocalised vacuum, with which it is uniquely self-

dual, the phase being the mechanism through which this is accomplished. 

We can also understand the behaviour of fermion and vacuum in terms of more abstract 

mathematics. Set boundaries themselves have vanishing boundaries. The boundary of a boundary 

is zero: 

  

2 0    

 

For A as subspace of the entire space X, then the boundary A is the intersection of the 

closures of A and of the complement of A or X – A, the closure being the union of the set and its 

boundary. Here the universe is X, the fermion A, the rest of the universe X – A. The point-fermion 

is itself a boundary. The boundary of the fermion is 0. This is nilpotency. 

 

Vacuum space 

If we look at the four components of the fermion in (2) we see that two have +E and two 

have –E. Where are those with –E? The answer is that they are in the vacuum space. There are as 

many antifermions as fermions. However, the chirality we have built into the structure (and that 

we can derive conventionally from the Dirac equation) means that only those in real space are 

observable. 

If the lead term in the fermionic column vector, defines the fermion type, then we can show 

that the remaining terms are equivalent to the lead term, subjected to the respective symmetry 

transformations, P, T and C, by pre- and post-multiplication by the quaternion units i, j, k defining 

the vacuum space: 

 

 Parity P   i ( ikE  ip + jm) i = ( ikE    ip + jm) 

 Time reversal  T k ( ikE  ip + jm) k = (   ikE  ip + jm)  

 Charge conjugation C –j ( ikE  ip + jm) j = (   ikE    ip + jm) 
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We can easily show that CP  T, PT  C, and CT  P also apply, and that                  

TCP  CPT  identity as 

 

( ( ( ) ) ) (–   –   ) ) (k j i i E i jm k j j kji i E i jm ijk i E i jm          k p k p k p   

 

The nilpotent formalism defines a continuous vacuum –( ikE  ip + jm) to each fermion 

state ( ikE  ip + jm), and this vacuum expresses the nonlocal aspect of the state. However, the 

use of the operators k, i, j suggests that we can partition this state into discrete components with a 

dimensional structure. In fact, this is where the idempotents become relevant. If we postmultiply 

( ikE  ip + jm) by the idempotent k( ikE  ip + jm) any number of times, the only change is to 

introduce a scalar multiple, which can be normalized away. 

 

           ( ) ( ) ( ) ( ) i E i jm k i E i jm k i E i jm i E i jm            k p k p k p k p   

 

The identification of i(ikE + ip + jm), k(ikE + ip + jm) and j(ikE + ip + jm) as vacuum 

operators and (ikE – ip + jm), (–ikE + ip + jm) and (–ikE – ip + jm) as their respective vacuum 

‘refleМtТons’ at ТnterfaМes provТНeН bв P, T and C transformations suggests a new insight into the 

meaning of the Dirac 4-spinor. We can now interpret the three terms other than the lead term in 

the spinor as tСe vaМuum ‘refleМtТons’ tСat are МreateН аТtС tСe partТМle. Аe Мan reРarН tСe 

existence of three vacuum operators as a result of a partitioning of the vacuum as a result of 

quantization and as a consequence of the 3-part structure observed in the nilpotent fermionic state, 

while the zitterbewegung can be taken as an indication that the vacuum is active in defining the 

fermionic state. 

The operators i, j, k have many fundamental roles. They are charges, C, P, T transformation 

operators, vacuum projections onto 3 axes, indicators of fermion / antifermion / spin up / down in 

the Dirac spinor, etc. They constitute the dimensions of vacuum space, dual to real space. The 

fermion has a half-integral spin because it requires simultaneously splitting the universe into two 

halves which are mirror images of each other at a fundamental level, but which appear asymmetric 

at the observational level because observation privileges the fermion singularity over vacuum. 

Zitterbewegung is an obvious manifestation of the duality, but, in observational terms, it privileges 

the creation of positive rest mass. 

A particularly interesting example of the operation of vacuum space is reflection in a real 

mirror. This is due to an aspect of the electric force. The mirror produces a laterally-inverted virtual 
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image. TСe mТrror refleМtТon Тs aМtuallв Нue to tСe rest of tСe unТverse (‘vaМuum’Ψ of аСТМС tСe 

mirror is a component. The virtual image is the reflection due to one component force. The mirror 

is constructed to concentrate the resources of vacuum almost entirely on this single force. 

 

Conclusion 

The Klein-4 symmetry between mass, time, charge and space is the most fundamental in 

physics, and its algebraic representation allows us to generate a version of relativistic quantum 

mechanics which is applicable to the fundamental particle or fermionic state. Its group structure 

also generates the symmetry-breaking between the interactions which occurs at the most 

fundamental level in physics. Other symmetries which occur at the deepest levels in physics can 

be seen to be consequences of this one. 
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