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Symmetry is everywhere in Nature and has a particularly significantrrgbyisics at the most fundamental level.
Here, we propose that the origin of all the fundamental symmetries is in a&igoup structure that connects the
fundamental parameters mass, time, charge and space. The algebras asgitititiede parameters emerge in a
sequence which first generates real numbers, then complex numbegiesniguns and multivariate vectors. The
combined algebra has a special significance in being identical to that Birtfieequation of relativistic quantum

mechanics. This is the equation that applies to the point-like fermion, théumdamental physical state. Many other
symmetries and the fundamental symmetry-breaking that occurs behedenr physical interactions can be seen to

emerge from this foundational symmetric structure.
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Introduction

We are not very good observerscience is a struggle for us. But we have developed one
particular talent along with our evolution that serves us well. This is pattern recognition. This is
fortunate, for, everywhere in Nature, and especially in physics, there are hints that symmetry is th
key to deeper understanding. And physics has shown that the symmetries are often ‘broken’, that
is disguised or hidden. A classic example is that between space and time, which are combined |
relativity, but which remain obstinately different.

Some questions are relevant here. Which are the most fundamental symmetries? Wher
does symmetry come from? How do the most fundamental symmetries help to explain the subject
Why are some symmetries broken and what does broken symmetry really mean?rivlaeires
are expressed in some way using integers. Which are the most important?

We may begin our explanation with a philosophical starting-point. The ultimate origin of
symmetry in physics is zero totality. The sum of every single thing in the universe is precisely
nothing. Nature as a whole has no definable characteristic. Zero, in fact, is the only loging}tstarti
point. If we start from anywhere else we have to explain it. Zero is the only idea we couldn’t
conceivably explain.

To go from there it is convenient to give a semi-empirical answer, though it is possible to

do it more fundamentally. The major symmetries in physics begin with just two ideas, duality and
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anticommutativity, and there are only two fundamental numbers or integers, 2 and 3. Everything
else is a variation of these. In effect, anticommutativity is like creation, duality is like conservati
We can now start with a symmetry that is not well known, but which appears to be foundational
to physics. This is between the four fundamental parameters

SPACE TIME MASS CHARGE

Here, mass has the more expansive meaning incorporating energy, and charge incorporat
the sources of all 3 gauge interactions (electric, strong and weak). The symmetry-brealerg be
the charges is an emergent property, which we will show later emerges from algebra.

It is possible to represent the properties of these parameters symmetrically in terms ofda Klein-
group:

space nonconserved real anticommutative
time nonconserved complex commutative
mass conserved real commutative
charge conserved complex anticommutative

Many physical, and even some mathematical, facts, not fully understood, may be seer

principally as consequences of this symmetry. They include:

The conservation laws and Noether’s theorem

The irreversibility of time

The unipolarity of mass

Why like charges repel but masses attract

The need for antistates

Lepton and baryon conservation and nondecay of the proton
Standard and nonstandard analysis, arithmetic and geometry
Zeno’s paradox

The irreversibility paradox

Gauge invariance, translation and rotation symmetry
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Representations of the parameter group

One of the key aspects of the exactness of the symmetry between the parameters is th
space, to be truly symmetrical to charge in its 3-dimensionality, is not just an ordinary vector, but
one which has the properties of a Clifford algebra:

i j k vector

i1y ik bivector pseudovector guaternion
i trivector pseudoscalar complex

1 scalar

The space-time and charge-mass groupings then become exact mirror images, 3 real +
imaginary against 3 imaginary + 1 real.
The vectors of physics are what Hestenes called multivariate vectors [1], isomorphic to

Pauli matrices and complexified quaternions, with a full product

ab=ab-+/axb

and a built-in concept of spin (which comes fromithe b term). Hestenes showed, for example,
that if we used the full produstV  for a multivariate vectoy instead of the scalar prodietV y
for an ordinary vectoV, we could obtain spin ' for an electron in a magnetic field from the

nonrelativisticSchrédinger equation.

In the parameter group, space and time become a 4-vector with three real parts and or
imaginary, by symmetry with the mass and charge quaternion, with three imaginary parts and on

real.
space time charge mass

ixjykz it Is je kw 1m

Vectors, like quaternions, are also anticommutative.
The group properties can be represented very simply using algebraic symbols for the

properties / antiproperties:

mass X y z
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time -X -y z
charge ' -y -z
space -X y -z

In algebraic terms, this is a conceptual zero.

The symmetry may be assumed to be absolutely exaatexception to this rule has ever
been found in forty years [2-7]. And this condition can be used to put constraints on physics tc
derive laws and states of matter. We can also develop a number of representations, which not on
show the absoluteness of the symmetry, but also the centrality to the whole concept of the idea ¢
3-dimensionality. A perfect symmetry between 4 parameters means that only the properties of on
parameter need be assumed. The others then emerge automatically like kaleidoscopic images.
IS, in principle, arbitrary which parameter we assume to begin with, as the following visual
representations will show. The representations also suggest that 3-dimensionality or
anticommutativity is a fundamental component of the symmetry.

In the colour representation, space, time, mass and charge, occupy concentric circles
divided into sectors suggesting the 3 properties / antiproperties. The properties (say, Rea
Nonconserved, Discrete) can be by primary colours (say, Red, Green, Blue, or R, G, B), and th
‘antiproperties’ (Imaginary, Conserved, Continuous) by the complementary secondary ones
(Cyan, Magenta, Yellow, or C, M, Y). All of these choices are arbitrary, and we can, for example
as in the second figure, reverse the representation. Only the overall pattern is fixed.

In any version of the representation, the total colour in each sector adds to white,

representing zero.
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Alternatively, we can make a direct Cartesian plot okilyeandz and—x, -y, —z algebraic
representations of properties and antiproperties from an origin at the centre of a cube to four of it
corners. As in the colour representation, there is a dual version (here depicted using dotted lines
which can also be seen as a depiction of a dual group to that of the parameters with one of tt
properties / antiproperties reversed. Such a dual group emerges in the representation of tf

fundamental parameters in the Dirac equation.

A third representation would place the parameters at the four faces or vertices of a regula
tetrahedron, whose edges take on the primary / secondary colours as shown to stand for the ¢
properties / antiproperties. There is, again, a built-in duality in this representation, as there is in th

others.
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Algebra and the parameters

What is striking about the parameters and their properties is that thpyrahg abstract
They can be reduced, in effect, to pure algebra. Real / Imaginary and Commutative /
Anticommutative are obviously so. But Conserved / Nonconserved can also be shown to be purel
algebraic. They also each have ttmiwnalgebra, which serves to define them. iFhghysical’

properties come solely from this algebra.

Mass 1 scalar

Time I pseudoscalar
Charge ijk quaternion
Space ijk vector

The first three are subalgebras of the last, and combine to produce a version of it, let’s say
i j k. In other words they are equivalent to a ‘vector space’, an ‘antispace’ to counter i j k. We see
why space appears to have a privileged status. It has 3 subalgebras:

bivector / pseudovector / quaternion, composed of:

i ij ik bivector pseudovector guaternion

1 scalar

trivector / pseudoscalar / complex, composed of:

i trivector pseudoscalar complex

1 scalar
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and scalar, with just a single unit:

1 scalar

The three parameters other than pace produce a combined vector-like structure, eve

though there is no physical vector quantity associated with them.

mass scalar 1
time pseudoscalar i 1
charge quaternion ijk 1
pseudovector ijk 1
bivector
COMBINED vector ijk ijki 1
STRUCTURE ijk AjKki 1

This is what we will call vacuum space.

We now have another symmetry, leading to zero totality:

Space Everything else
Mass 1 scalar
Time i pseudoscalar
Charge i1jk quaternion
Space ijk vector Antispace ij k vector

Vacuum space

We note that the algebras of charge, time, mass are subalgebras of vector algebra. It seer
that, though all the parameters are equivalent in the group structure, they also produce
mathematical hierarchy, whickuggests an ‘evolutionary’ structure in a logical, not a time
sequence. This evolution can, in fact, be derived, and applied much more generally as :
fundamental information process. It seems to operate in mathematics, computer science, chemist

and biology, as well as in more complex aspects of physics.
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We can also derive many aspects of the complexity directly. This is by packaging the

physical information produced by combining the information from the individual algebras:

Time Space Mass Charge
I ijk 1 ijk
pseudoscalar vector scalar quaternion

Working out every possible combination of the four parameters and their 8 units requires
64 combined units. This turns out to be the algebra of the Dirac equation, the relativistic quantun
mechanical equation of the fermion, the only true fundamental object that we know must exist.

There 64 possible products of the 8 units are given by:

Lt ) 4 units
FL ) x0jk 12 units
FL+x)xE K 12 units
(1L, +H) x4 k)x ]k 36 units

The + and- versions of the units:

i J k ii ij ik* i 1
i j k i i k

ir* ij ik i ij ik

jr* i jk ji jj jk

k* ki kk ki ki ki

form agroup. The simplest starting point for a group is to finddgkeerators These are the set of
elements within the group that are sufficient to generate it by multiplication. Here they are marked
with an asterisk.

Since vectors are complexified quaternions and quaternions are complexified vectors, we

obtain an identical algebra if we use complexified double quaternions:
i Jj* k ii ij ik* i 1
i j k ii ii ik
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in* Ij ik i iy itk
Jji* /] Jk ji 7y ijk
ki* kj kk iki ikj ikk

There is also a double vector version:

i j* i j k* i 1
i j i i Kk

ii* ij ik Ai Aij ik

ji* ji jk )t jj ik

ki* ki kk ki @& ki

The introduction of symmetry-breaking

We started with eight basic units, but, by the time that we have worked out all the possible
combinations of vectors, scalars, pseudoscalars and quaternions, we find that the Dirac algebra h
32 possible units or 64 if you have + ansigns. This group of order 64 requires only 5 generators.
There are many ways of selecting these, but all such pentad sets have the same overall structu
However, the most efficient way of generating the 22 is to start with five&eompositesrather
than eight primitives.

All the sets of 5 generators have the same pattern, as we can see by splitting up the 64 uni

into 1,-1,i and-i, and 12 sets of 5 generators, each of which generates the entire group:

1 I -1 -

i Jj Kk ik J -i -1 -k -k -j
A h ki ki i ok - -
ki K Kk Ij i -k - -k - i
i ij ik Kk j -ii  -ij -ik -k -
ji i Gk &k -ji -§j -jk -i -k
ki ki Kkk ] i -Kki -Kkj -Kk -j -i

The creation of any set of 5 generators requires symmetry-breaking of one 3-D quantity.

From the perfect symmetry of
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i i j k 1 i j  k

we rearrange to produce:

i i j k 1

i J k
and finally:

ik i /! k 1j

The symmetry-breaking has an impact on the nature of the parameters involved. If we You
have to break the symmetry of one space or the othey, kfori, j, k. Since space is nonconserved
and, therefore, rotation symmetric, we choose this to be charge. So, beginning with time, space
mass and charge, we may take one of eadh jofk of charge on to each of the other three.
Physically, to create the generators we have to distribute the charge units onto the other paramete
This creates new ‘compound’ (and ‘quantized’) physical quantities, which, using arbitrary names

and symbols, we call ‘energy’, ‘momentum’ and ‘rest mass’. So

Time Space Mass Charge

i ijk 1 ijk
become

Energy Momentum Rest Mass

i i7fjiki 1

E Px Py Dz m

The combined object isilpotent squaring to zero, because
(1kE+i1pX +jip, +k1py +jm) (1kE+i1pX +jip, +k1py +jm) =0 (1)

We can identify this as Einstein’s relativistic energy-momentum equation
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or, in its more usual form,
E*-pc®-mc*=0

Nilpotent quantum mechanics
The Dirac equation simply quantizes the nilpotent equation, using differentials in time and

space, operating on a phase factorHandp. So (1) becomes

o . . o :
TK—F/iV+im|[+iKE tip+ jm)e P =0
(+ ~ FAVE] j( p+jm)

by simultaneously applying nonconservation and conservation. Here, we note there are four sig
variations inE andp. The fact that this is reduced by nilpotency from eight leads to another
symmetry-breaking. We lose a degree of freedom, leading to chirality.

Written out in full the four components are:

(IkKE+ ip + jm) fermion spin up

(IkE - ip + jm) fermion spin down

(—IkE+ ip + jm) antifermion spin down

(—IkE- ip + jm) antifermion spin up (2)

The signs are, of course, intrinsically arbitrary, but it is convenient to identify the four states
by adopting a convention.

The spinor psperties of the algebra still hold, even when we don’t use a matrix
representation, angris a 4-component spinor, incorporating fermion / antifermion and spin up /
down states. We can easily identify these with the arbitrary sign options i& &nelp (or c.p)
terms. This is accommodated in the nilpotent formalism by transforrkig+(ip + jm) into a
column vector with four sign combinationsiBfandp, which may be written in abbreviated form
as (ikE + ip +jm). Using an accepted convention, this can be either operator or amplitude. The

symmetry between operator and amplitude is another leading to O.
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(iIkEiip+j1H) (i1kEiip+jm)—>0

gives us both relativity and quantum mechaniesversion which is much simpler and seemingly
more powerful than conventional quantum mechanics.

In quantum mechanics we take the first bracket as an operator acting on a phase factor. Tt
E andp terms can include any number of potentials or interactions with other particles. Squaring
to O gives us the Pauli exclusion principle, because if any two particles are the same, thei
combination is Oln this form, we don’t even need an equation, just an operator of the form (+ iKE
+ ip + jm) because the operator will uniquely determine the phase factor needed to produce :
nilpotent amplitude. Rather than using a conventional form of the Dirac equation, we find the

phase factor such that, using the defined operator,
(operator acting on phase factor)? = amplitude? = 0.

If the operator has a more complicated form than that of the free particle, the phase facto
will, of course, be no longer a simple exponential but the amplitude will still be a nilpotent.
The same operation which gives us energy, momentum, and rest mass also gives us the brok

symmetry between the 3 charges

I i7jrki 1

weak strong electric

which now adopt the characteristics of the mathematical objects they are connected to, and th

corresponding group symmetries:

pseudoscalar  vector scalar

SU2) SU(3) u1)

The connections can be demonstrated with full rigour.
A particular subalgebra of the 64-part algebra creates a symmetry between the two space
which remains unbroken. This is the H4 algebra, which can be obtained¢ospigdguaternions,
with units 1,ii, jj, kk. The result is a cyclic but commutative algebra with multiplication rules
iiii=jjjj= kkkk=1
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ijj=jjii= kk
Jj k= kkjj=ii
kk ii = ii kk= jj

The same algebra can be achieved witmigativevalues of the paired vector units-1,

ii,—j, —Kk. (1 is equivalent here tai.) This time we have:

(i) (-ii) = (i) () = (-kk) (-kk) =1
(i) (i) = (i) (i) = (-kk)
(1) (-kk) = (-kk) (-kk) = (-ii)
(-kk) (i) = (-ii) (-kk) = ()

If we use the symbols=ii =i, J =jj =], K = kk =Kk, 1, to represent this algebra,

we can structure the relationships in a group table:

* 1 I ] K
1 1 I ] K
I I 1 K ]
] ] K 1 I
K K ] I 1

The group is a Klein-4 group, exactly like the parameter group.

All the standard aspects of spin and helicity are easily recovered with nilpotentmquantu
mechanics (NQM). This means that it is possible to find a spinor structure which will generate the
NQM state vector. A set of primitive idempotents constructing a spinor can be defined in terms of
the H4 algebra, constructed from the dual vector spaces:

(1-4i-jj-kk) / 4
(1 -ii+jj+kk) / 4
(1 +ii-jj+kk) / 4
(1 +ii+jj-kk) / 4
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As required the 4 terms add up to 1, and are orthogonal as well as idempotent, all product
between them being 0. The same terms can be generated using coupled quaternions rather tt

vectors:

NN ST
_ =
o+ +
SHE TS
+ 0+

X X
| | +
XX
> X X
N N — N — -
~
N

The ‘spaces’ in the spinor structure are notably completely dual. The orthogonality

condition effectively creates a quartic space structure with zero size, a point-particle.

Vacuum
Another way of looking at Pauli exclusion leads to another symmetry. Here, we say that
Nature represents a totality of zero, and if you imagine creating a particlea{Mitie potentials

representing its interactions) in the form
(iIkE +/p+ jm)

then you must structure the rest of the universe, so that it can be represented by
- (iIkEiierjm)

The nilpotent formalism indicates that a fermion ‘constructs’ itS own vacuum, or the entire
‘universe’ in which it operates, and we can consider the vacuum to be ‘delocalised’ to the extent
that the fermion is ‘localised’.

We can consider the nilpotency as defining the interaction between the localised fermionic
state and the delocalised vacuum, with which it is uniquely self-dual, the phase being the
mechanism through which this is accomplished. We can also consider Pauli exclusion as sayin
that no two fermions can share the same vacuum. The ‘hole’ left by creating the particle from
nothing is the rest of the universe needed to maintain it in that state. We give it the name vacuun

So the vacuum for one particle cannot be the vacuum for any other.
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We can also think of the dual ‘spaces’ represented by i, j, k andi, j, k as combining together
to producezero totalityin a point particle with zero size. It is the only way we can produce discrete
points in space. The nilpotent formalism indicates that a fermion ‘constructs’ its own vacuum, or
the entire ‘universe’ in which it operates, and we can consider the vacuum to be ‘delocalised’ to
the extent that the fermion is ‘localised’. We can consider the nilpotency as defining the interaction
between the localised fermionic state and the delocalised vacuum, with which it is uniquely self-
dual, the phase being the mechanism through which this is accomplished.

We can also understand the behaviour of fermion and vacuum in terms of more abstrac
mathematics. Set boundaries themselves have vanishing boundaries. The boundary of a boundze

is zero:

00=0"=0

For A as subspace of the entire space X, then the bouédasythe intersection of the
closures of A and of the complement of A or-)4, the closure being the union of the set and its
boundary. Here the universe is X, the fermion A, the rest of the univerge Xhe point-fermion

is itself a boundary. The boundary of the fermion is 0. This is nilpotency.

Vacuum space

If we look at the four components of the fermion in (2) we see that two laaad-two
have-E. Where are those witHE? The answer is that they are in the vacuum space. There are as
many antifermions as fermions. However, the chirality we have built into the structure (and that
we can derive conventionally from the Dirac equation) means that only those in real gpace ar
observable.

If the lead term in the fermionic column vector, defines the fermion type, then we can show
that the remaining terms are equivalent to the lead term, subjected to the respective symmett
transformationsP, T andC, by pre- and post-multiplication by the quaternion uinjtsk defining

thevacuum space

Parity P I(t IkE+ ip+ jm) i= (£ IkE p+ jm)
Time reversal T k(x ikEt ip+jm) k= ( IkE+ ip +jm)
Charge conjugation C —j(£ ikE+ ip+ jm) j= ( IkE ip +jm)
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We can easily show thaCP = T, PT = C, and CT = P also apply, and that
TCP= CPT=identity as

k(-j(I(xKE £ip +jm)k)j)j= -kji(£KE tip + jm)ijk = (xKE £ip +jm)

The nilpotent formalism defines a continuous vacw@nikE + ip + jm) to each fermion
state £ ikE £ ip + jm), and this vacuum expresses the nonlocal aspect of the state. However, the
use of the operatoks i, j suggests that we can partition this state into discrete components with a
dimensional structure. In fact, this is where the idempotents become relevant. If we postmultiply
(xikE = ip +jm) by the idempoterik(+ ikE + ip + jm) any number of times, the only change is to

introduce a scalar multiple, which can be normalized away.

(XKE +ip+ jm)k(+KE +ip+ jm)k(+KE +ip+ jm) ... ®(+KE + ip+ jm)

The identification ofi(ikE + ip + jm), K(IKE + ip + jm) andj(ikE + ip + jm) as vacuum
operators andKE — ip + jm), (HikE + ip + jm) and(—ikE — ip + jm) as their respective vacuum
‘reflections’ at interfaces provided by P, T andC transformations suggests a new insight into the
meaning of the Dirac 4-spinor. We can now interpret the three terms other than the leiad term
the spinoras the vacuum ‘reflections’ that are created with the particle. We can regard the
existence of three vacuum operators as a result of a partitioning of the vacuum as a result ¢
guantization and as a consequence of the 3-part structure observed in the nilpotent fermionic stat
while thezitterbewegungan be taken as an indication that the vacuum is active in defining the
fermionic state.

The operators j, k have many fundamental roles. They are chaf@d’, T transformation
operators, vacuum projections onto 3 axes, indicators of fermion / antifermion / spin up / down in
the Dirac spinor, etc. They constitute the dimensions of vacuum space, dual to real space. Tr
fermion has a half-integral spin because it requires simultaneously splitting the universe into twc
halves which are mirror images of each other at a fundamental level, but which appear asymmetri
at the observational level because observation privileges the fermion singularity over vacuum
Zitterbewegungs an obvious manifestation of the duality, but, in observational terms, it privileges
the creation of positive rest mass.

A particularly interesting example of the operation of vacuum space is reflection in a real

mirror. This is due to an aspect of the electric force. The mirror produces a laterally-invertéd virtua
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image.The mirror reflection is actually due to the rest of the universe (‘vacuum’) of which the
mirror is a component. The virtual image is the reflection due to one component force. The mirror

IS constructed to concentrate the resources of vacuum almost entirely on this single force.

Conclusion

The Klein-4 symmetry between mass, time, charge and space is the most fundamental i
physics, and its algebraic representation allows us to generate a version of relativistic quantur
mechanics which is applicable to the fundamental particle or fermionic state. Its group structure
also generates the symmetry-breaking between the interactions which occurs at the mos
fundamental level in physics. Other symmetries which occur at the deepest levels in physics ca

be seen to be consequences of this one.
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