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Abstract. 3-dimensionality is one of the most important and profound ideas in the whole of physics. 

The fact that space is 3-dimensional gave us a special insight into Nature from an early period because 

it set us the problem of explaining why this counterintuitive structure was so prevalent in natural 

systems. Part of the answer was revealed by the discovery of quaternions by Hamilton in 1843, 

although this spectacular insight was not followed up with the thoroughness it deserved. Since then 

we have found that Nature requires two 3-dimensionalities to define all the important structures in 

physics, chemistry and biology, as well as those of algebra and geometry. Here, we will largely 

discuss the importance of 3-dimensionality in physics. 

 

Introduction 

 

3-dimensionality is one of the most important concepts in physics. It is also one of the 

most important breakthroughs in the whole of human knowledge. It presents us with an 

extraordinary and non-obvious fact which challenges interpretation. That space is 3-

dimensional has probably been known in some form for millennia. But, as we shall see, the 

concept extends beyond space, and the spatial example leads us to other ones which are 

equally important in physics. In addition to the fact that 3-dimensionality has such a special 

and peculiar signature that it provides one of the main access routes to unravelling Nature’s 

most fundamental secrets, it is also important for many other reasons. As I hope to show, it is 

the only source for discreteness and localisation in Nature. Without it, measurement and 

observation would be impossible. And it appears in many guises. It is a ubiquitous condition 

that extends far beyond its appearance in the structure of space. 

Though it is fashionable to be cavalier about dimensions and to act as though they can be 

invented and removed at will – as well as distorted and modified – to explain aspects of 

physics, it is an inescapable fact that space, the only physical parameter that gives us a direct 

way of appreciating the physical world through measurement, is most definitely 3-

dimensional. And this 3-dimensionality cannot be extended to, say, 9-D, though it could be 

embedded in a higher dimensionality including other things. 

Much has been said about the difficulty of explaining 3-dimensionality, but, in fact, it isn’t 

difficult at all. We have known the reason why 3-dimensionality is special for more than 150 

years. This happened when Sir William Rowan Hamilton was trying to extend the ‘2-D’ 

complex number system to explain 3-D space. 

 



 
 

 ‘triads’ quaternions 

 

Hamilton’s attempted extension of the Argand diagram to include a second imaginary axis 

(j) in a system of ‘triads’ failed because there was no meaning for the product ij within the 

system. There was no closure in the algebra, but eventually by positing three cyclic imaginary 

dimensions (i, j, k) alongside the real one (which could not be shown on the diagram), he was 

able to generate a division algebra that was closed and consistent.  

The need for a real product means that the 3-D quaternions are in some way part of a 

larger 4-dimensionality as their name implies. You can’t even define the 3 imaginary units 

without invoking the real one (1), and each of the 3 imaginary axes is in some sense 

orthogonal to the real one that cannot be drawn on the same diagram. But this one is not like 

the other 3. It cannot be totally absorbed into 3 axes, which are effectively, in the pure 

mathematics, interchangeable with each other. The relationship is a broken one like the real 

and imaginary axes of complex numbers. 

Quaternions, significantly, are anticommutative, with the multiplication rules: 

 

               ij = –ji  = k;        jk = –kj  = i;        ki = –ik  = j;        i
2
 = j

2
 = k

2
 = –ijk = 1. 

 

This becomes apparent when we multiply ij by ji, for 

 

ij ji = – ii = 1 

 

not –1. The significance of this is that it explains 3-dimensionality, for i, j and ij form a 

closed set, which cannot be extended (unless antiassociativity is additionally introduced – and 

then only in the singular case of octonions). It also leads to a cross-product, which is 

characteristic of 3-, but not higher, dimensionality. In simple terms, you can’t make 

anticommutativity work if you have more than 3 terms. In the absence of antiassociativity, 

 

anticommutativity  3-dimensionality 

 

The ‘3-ness’ is thus not the primary cause of the 3-dimensionality of space. It is simply a 

result of anticommutativity. If we have two axes, i and j, that are anticommutative with each 

other, then we cannot draw any other axis that is anticommutative with them, unless it is ij, 



which we also call k. Anticommutativity forces 3-dimensionality. The strange arbitrariness of 

the number 3 is explained. Commutative things, of course, can be defined to infinity. If i and 

j were commutative, we could have i, j, k, l, m, etc. without limit. In physical terms, 

anticommutative things ‘know’ about each other’s presence and have to act accordingly; 

commutative things do not. 

Quaternions are known as one of the four division algebras in mathematics. The only 

higher dimensional one is octonions with 7 imaginary components and one real, compared to 

the 3 imaginary and one real of quaternions, and octonions are antiassociative as well as 

anticommutative. So, for example, a(bc) = – (ab)c. 

 

 real numbers  1 commutative  associative 

 complex numbers 2 commutative  associative 

 quaternions  4 anticommutative associative 

 octonions  8 anticommutative antiassociative 

 

Significantly, the kind of dimensionality found in space, which is characteristic of that of a 

nonconserved quantity, with an affine structure and rotation symmetry between the 

dimensions, can only exist for 3 dimensions unless the system is also antiassociative. Even 

then it can only exist for 7 dimensions. There is no extension of space as we know it to 9 

dimensions. The 3 dimensions of space could be embedded in a higher dimensionality but 

they cannot be extended to become one. It is mathematically impossible. And the application 

of division algebras to space is crucial for physical purposes, where measurement and 

counting are fundamental processes. (Rowlands, 2015c) 

 

The algebra of space 

 

Quaternions are the only pure 3-D system. The 3 cyclic products produce each other and 

nothing else. But space is not pure 3-D. We can go back to Hamilton to find out why. 

Hamilton early on decided to extend quaternions by complexifying them. So he took the 

product 

 (1, i)  (1, i, j, k) 

 

where i is the ordinary (complex) square root of –1. Ordinary complex numbers are, of 

course, distinct from quaternions in being commutative. Our base set is now 1, i, i, j, k, and, 

multiplying everything out, we will also generate terms like ii, ij, ik. For reasons that will 

soon become clear, we will write ii = i, ij = j, ik = k. 

If we take the products of these terms, we can write: 

 

(ii)
2
 = (ij)

2
 = (ik)

2
 = –i(ii) (ij) (ik) = 1 

(ii) (ij) = i(ik) 

(ik) (ii) = i(ij) 

(ij) (ik) = i(ii) 

 



We can also write these relations in the form: 

 

i
2
 = j

2
 = k

2
 = –iijk = 1 

ij = ik 

ki = ij 

jk = ii 

 

The complexified quaternion units ii = i, ij = j, ik = k are, of course, anticommutative in 

exactly the same way as ordinary quaternion units, but we now notice an extra feature, the i 

term outside the bracket that has appeared on the right-hand side of the equations. The terms 

we have been using here, ii = i, ij = j, ik = k, are easily identifiable as the units of the Clifford 

algebra of 3-D space. They are also called multivariate vector units (Hestenes, 1966) and are 

isomorphic to the Pauli spin matrices. I will refer to them simply as vector units. 

They are the true algebra of 3-D space, but they are not a pure 3-D algebra, because the 

products of ij, etc., are not themselves vector units but pseudovectors, such as ik. These are 

mathematically the same as quaternions and are seen in physical concepts such as area and 

angular momentum. In addition the triple product ijk is a pseudoscalar i, as with volume, if 

we use pure space units. 

In principle, the full algebra of vector space requires us to use a set of 8 base units, which 

includes 

 vectors  i, j, k 

 pseudovectors = quaternions ii, ij, ik 

 pseudoscalar = complex term i 

 scalar 1 

 

Including + and – values, this requires 16 base units, as opposed to 8 for quaternions and 4 

for complex numbers. We also note that quaternions, complex numbers and real (scalar) 

numbers are subalgebras of this one. 

The fact that space isn’t a ‘pure’ 3-D means that complex numbers have to be taken into 

account when we are discussing its properties, perhaps also explaining how a complex 

variable like time can be absorbed relatively naturally into the ‘4-vector’ combination of 

space and time. If we take the complexified version of the quaternion base units 1, i, j, k, we 

naturally produce the 4-vector units i, i, j, k. Even though the i term here refers in the first 

instance to volume, rather than time, the commutativity of the relation between i and the 

quaternion units means that the physical nature of the unit doesn’t need to be specified. 

The existence of a complexified quaternion system for describing one of the fundamental 

physical parameters suggests the question, never fully answered: Is there any role for pure 

quaternions at the fundamental level in physics? Well, we have had 150 years of 

extraordinarily vituperative anti-quaternion propaganda obscuring the great simple fact that 

quaternions have solved the problem of 3-dimensionality. Even if the absurdity of this is 

conceded, there is always the fallback position that quaternions have never found any 

physical role of their own. 



There is no doubt that the quaternion system underpins the 3-D properties of space, and 

this has been emphasized by the subsequent discoveries of quantum mechanical spin and the 

special relativistic connection of space and time, both of which it can be said to have 

predicted. However, it would seem strange if such a perfect system should only have such an 

indirect manifestation. Do quaternions have any more direct manifestation in physics? 

This is where we need to introduce the Klein-4 parameter group, which I have discussed 

many times previously. (Rowlands, 1983, 1991, 2001, 2007, 2009, 2014, 2015a) There is no 

doubt that the quaternion system underpins the 3-D properties of space, and this has been 

emphasized by the subsequent discoveries of quantum mechanical spin and the special 

relativistic connection of space and time, both of which it effectively predicted. 

 

A group of order 4 

 

The basis of this is that Nature exhibits a zero totality, which, at the fundamental level, is 

manifested through a symmetry between the parameters space, time, mass and charge. The 

structure is that of a Klein-4 or D2 group which can be represented in many different ways. 

Strikingly, it is full of manifestations of 3-dimensionality or anticommutativity, in addition to 

numerous dualities or summations to zero. 

 

 mass conserved  real continuous (1-D) 

    commutative 

  

 time nonconserved  imaginary continuous (1-D) 

    commutative 

  

 charge conserved  imaginary discrete (3-D) 

    anticommutative 

  

 space nonconserved  real discrete (3-D) 

    anticommutative 

 

In a more extensive specification, the properties / antiproperties would become: 

 

 

 

 

 

 

 

 

 

 

 



 mass conserved  real continuous 

  identity norm 1 nondimensional  

  translation asymmetric   global 

    commutative 

  

 time nonconserved  imaginary continuous 

  no identity norm –1 nondimensional  

  translation symmetric  global 

    commutative 

     

 charge conserved  imaginary discrete  

  identity norm –1  dimensional 

  translation asymmetric   local 

  rotation asymmetric   anticommutative 

   

 space nonconserved  real discrete  

  no identity norm 1  dimensional 

  translation symmetric   local 

  rotation symmetric   anticommutative 
 

Using the symbols, x, y and z, to represent the properties, with –x, –y and –z standing for 

the exactly opposite ‘antiproperties’, indicates that this symmetry incorporates a conceptual 

zero: 

 mass    x     y   z   

 time  –x  –y   z    

 charge    x  –y –z   

 space  –x     y  –z  

 

The 3-dimensionality inherent in this structure is inherent in the use of 3 properties and 3 

symbols, x, y and z, and can be seen in the use of 3-dimensional representations, and an 

analogous use of 3 colours. (Rowlands, 2003, 2007, 2014, 2015a) 

The colour representation uses the 3 primary colours (R, G, B) as properties and the 3 

secondary colours (C, M, Y) as antiproperties or vice versa, with colourless (white) 

summation of each sector. Concentric circles represent the parameters in any order. 

 



 

The 3-D representation plots the properties as x, y, z and the antiproperties as –x, –y, –z to 

four corners of a cube from its centre. The dual group formed by reversing one property / 

antiproperty combination is represented by four dotted lines. 

 

 
 

The tetrahedral representation uses the primary and secondary colours as in the colour 

representation. The four parameters appear as either the four faces or four vertices, with the 

edges representing the six properties / antiproperties. 

 

 
 



Now, both the set of parameters, and consequently all of physics, can be reduced to 

algebra, because the characteristics of the parameters can be defined entirely through the 

algebras that represent them. 

 

 mass scalar 1 

 time pseudoscalar (complex) i 

 charge quaternion (pseudovector) i, j, k  

 space vector i, j, k 

 

This is a kind of ontological ordering because the complexity increases at each level. Mass(-

energy), time and space have the algebras that we familiarly associate with them, or that, in 

the case of time, are derived from developments in physics. 

Yet another representation is a ‘graph’ which also suggests an interpretation in category 

theory, which seems to apply to both the parameter group of mass, charge, space and time, 

and the underlying universal rewrite system on which it is based. This representation again 

makes use of the algebraic representation of properties and antiproperties: 

 

 
 

A related diagram was drawn by Vanessa Hill for my video-recorded lectures on The 

Foundations of Physical Law, based on a rough sketch provided by myself. 

 

The algebra of charge 

 

The algebra that is least familiar in this set is that of charge, which fills what would 

otherwise be a gap in the ontological sequence. The reason why this is less familiar is 

because the concept of ‘charge’ has only been slowly extended to incorporate the sources of 

strong and weak, as well as electrical, interactions. I can certainly remember this usage, now 

so relatively familiar, being met with incomprehension thirty and even twenty years ago. 

Even so, the use of the word is to mean a simple fundamental thing is still somewhat 

equivocal. 



Wikipedia, for example, says that: ‘Various charge quantum numbers have been 

introduced by theories of particle physics. These include the charges of the Standard Model: 

The color charge of quarks. The color charge generates the SU(3) color symmetry of quantum 

chromodynamics. The weak isospin quantum numbers of the electroweak interaction. It 

generates the SU(2) part of the electroweak SU(2) × U(1) symmetry. Weak isospin is a local 

symmetry, whose gauge bosons are the W and Z bosons. The electric charge for 

electromagnetic interactions. In mathematics texts, this is sometimes referred to as the u1-

charge of a Lie algebra module.’ The article also says that, in gravitation, charges are 

‘Eigenvalues of the energy-momentum tensor correspond to physical mass.’ 

The basic idea is that ‘charges’ are the sources of the four known fundamental 

interactions. However, the idea that there is some common structure is never stated explicitly 

and the charge concept is only introduced in roundabout ways, and seems a little confused, 

especially in its lack of reference to the coupling constants for the 3 interactions. 

Why is this? The simple answer is that the four known interactions are based on different 

symmetry groups and have different physical manifestations, and that, in addition, there are 

fundamental differences between gravity and the other 3 (gauge) interactions. 

The problem might be considered insuperable but for two things: 

(1) Whatever extra complications are manifested, all four forces have a ‘Coulomb’ or 

inverse square component, and that, in the case of gravity, it is attractive for like particles, 

whereas like particles repel in the case of all gauge forces. The Coulomb component in the 

case of the gauge forces determines the quantity known as the coupling constant. 

(2) There appears to be an energy regime where the differences between the 3 gauge 

forces disappear and the coupling constants become equal. This Grand Unification energy is 

close to the Planck mass, which would link gravitational with gauge values. It is also possible 

that the character of the gauge forces would also become purely Coulombic at this energy. 

So, we are entitled to propose a working hypothesis in which the gauge forces stem from a 

3-component or ‘dimensional’ quantity charge, which is imaginary, and therefore 

quaternionic, in nature, to explain the difference in sign displayed by forces between like 

imaginary charges and like real masses. In addition, as Kant showed in the eighteenth 

century, inverse-square forces are direct manifestations of the 3-dimensionality of space, and, 

in a more modern perspective, are manifestations of the symmetry surrounding a point 

source. In this case, the parameters mass and charge could be manifestations of a quaternion 

structure, with three imaginary parts and one real, symmetric to the 4-vector structure of 

space and time, with three real parts and one imaginary. 

 

 space          time              charge        mass 

 ix jy kz          it  is je kw 1m 

 

The 3-dimensional parts of the quaternions and 4-vectors, which are respectively 

irrotational and rotational, can be represented on mutually orthogonal axes, from which the 

fourth parts are excluded. The total structure has interesting parallels to an octonion and can 

be written in an octonion form, with the antiassociative aspects seemingly excluded from real 

physical manifestations. 



            
The basic quaternion structure explains the coupling constant and the Coulombic term for 

each of the forces. But we still have to explain why the extra terms appear which make the 3 

gauge interactions appear so different from each other at energies below Grand Unification. 

As we will show this is possible in a fundamental way, but it requires the interaction between 

two separate 3-dimensionalities, an interaction which explains why we have interacting point-

particles at all. 

The application of a 3-dimensional structure to charge as well as to space in the parameter 

group suggests that only 3-D concepts can be discrete, and that all discreteness in Nature 

comes from 3-dimensionality, as mass and time are in their different ways continuous. The 

discreteness of charge is obvious because it is a conserved quantity, but that of space is more 

subtle because it is nonconserved and so has no fixed units. It is, however, necessary to 

explain space as an observable quantity and also to explain Zeno’s paradoxes. 

It is, in fact, impossible to imagine a non-dimensional or continuous quantity as discrete. 

Dimensionality is needed to any method of division we can imagine, and to explain how we 

have zeros or crossover points. A discrete ‘point’ requires 3-D for its existence, and, as we 

will show, it requires 2  3-D. In addition, there is a natural relation between discreteness and 

anticommutativity which we see in physics. But, according to the universal rewrite system 

(Rowlands and Diaz, 2002, Marcer and Rowlands, 2014a,b, Rowlands, 2007, 2010, 2014), 

anticommutativity is also the origin of discreteness in mathematics in its creation of the idea 

of a repeating series of closed entities. 

 

A double space 

 

Suppose we set out the entire algebra and subalgebras of each of the four parameters in the 

Klein-4 group: 



 space  vector i, j, k, ii, ii, ik, i, 1 

    i, j, k, i, j, k, i, 1 

 charge  quaternion (pseudovector) ii, ij, ik, i, 1 

    i, j, k, 1 

 time  pseudoscalar (complex) i, 1 

 mass  scalar 1 

 

We see that immediately that charge, mass and time have algebras equivalent to the 

subalgebras of space. But if we put them altogether, they create an alternative algebra 

identical to that of Space.  

 

 combination vector i, j, k, ii, ii, ik, i, 1 

   i, j, k, i, j, k, i, 1 

 charge quaternion (pseudovector) ii, ij, ik, i, 1 

   i, j, k, 1 

 time pseudoscalar (complex) i, 1 

 mass scalar 1 

 

Since, in the group, they total to zero, we may see the combination as a kind of ‘antispace’ 

or alternative space to space itself. Note that its dimensionality comes from that of charge. If 

we assume these parameters are the only sources of physical knowledge, then the zero totality 

looks like a double space, whose two halves (with respective units represented, for 

convenience, in lower case symbols and capitals) mirror each other in some way. 

 

 space vector i, j, k, ii, ii, ik, i, 1 

   i, j, k, i, j, k, i, 1 

 combination vector I, J, K, iI, iJ, iK, i, 1 

   I, J, K, I, J, K, i, 1 

 

Let us assume that these parameters are the whole of physics. How do we combine them? 

By combining the algebras. 

 

 Time  Space  Mass  Charge 

 i i  j  k 1  i  j  k 

 pseudoscalar vector scalar quaternion 

 

Working out every possible combination of the four requires 64 units. This turns out to be 

the algebra of the Dirac equation, the relativistic quantum mechanical equation of the 

fermion, the only true fundamental object that we know must exist. The result is another 

group, this time of order 64, rather than 4: 

 

 

 



 1  i     –1   –i 

 ii  ij ik  ik  j  –ii   –ij  –ik  –ik –j 

 ji  jj jk  ii k  –ji   –jj  –jk  –ij –i 

 ki  kj kk  ij  i  –ki   –kj  –kk  –ij –i 

 iii  iij  iik  ik  j  –iii   –iij   –iik  –ik  –j 

 iji  ijj ijk   ii  k  –iji   –ijj  –ijk   –ii  –k 

 iki  ikj ikk   ij  i  –iki   –ikj  –ikk  –ij  –i 

 

We could also use the two ‘spaces’ as base units:  

  

 Space                                   Time-Mass-Charge 

 i  j  k  I  J  K 

 vector vector 

 

Here, we simply replace the quaternion units in the previous table (i, j, k) with the second set 

of vector units (I, J, K). 

Groups do not need to be specified by all their elements. A small number of elements 

multiplied out can often generate the entire group. Here we only need 5 generators. 5 is a 

very significant number because it is the point in physics and mathematics at which 

symmetries become broken and chirality forces itself upon us. Thus, even though we could 

have generated the group from the six components i, j, k, I, J, K, or i, j, k, i, j, k, which 

would have maintained perfect symmetry between the two ‘spaces’, the minimum number of 

generators, which is always what nature requires, forces us to break it. 

The group can be structured as being made up of 4 complex number units and 12 sets of 5 

generators, any one of which, for example,  

 

  ii  ij ik  ik  j  

 

could be used to produce the entire group. Even this does not exhaust the options. The 60 

units could be organized as 12 sets of 5 generators in at least 64 different ways (with 4 

independent options for sign changes, with changes of vectors and quaternions, and with real 

and imaginary units). The 60 is reminiscent of the 60 units of carbon in the C60 molecule, 

which are arranged in 12 pentagons, separated by hexagons which contain no extra atoms – in 

relation to the widespread appearance of structures of this type in biology and chemistry, as 

well as in physics, this is no coincidence. The symbols are, of course, arbitrary, and we could 

adopt any of the 64  12 sets of 5 available to us to represent physics, but it is most 

convenient to choose the set that is closest to our already accepted conventions. 

The set of 5 generators is not unique (e.g. any row of the table of 64 can be used), but all 

sets follow the same pattern. Typically, beginning with 

 

 Time  Space  Mass  Charge 

 i i  j  k 1  i  j  k 

 



we take one of each of the charge units i  j  k on to each of the units of the other three 

parameters, to create: 

 

 ik  ii ji ki  1j 

 

The symmetry of one space i  j  k or the other i  j  k has to be broken. 

Because space is a nonconserved quantity, and its component dimensions i, j, k can’t be 

uniquely identified or distinguished from each other, the broken symmetry in physics 

becomes that of charge i, j, k. (Physics requires this, though the symbols could be 

interchanged.) We can then show that 5 generators leads, among many other things, to the 

broken symmetry between the 3 charges which has troubled physics for more than forty 

years. This affects the nature of the charges as we observe them, and we can begin to 

recognise here the respective characteristics of weak, strong and electric charges, governed 

by the respective SU(2), SU(3) and U(1) symmetries. 

The charges adopt characteristics of the mathematical objects they are connected to. So we 

find that the charge we have represented by k becomes associated with a pseudoscalar 

quantity i; that the one represented by i becomes associated with three vector units i, j and k; 

and the one represented by j becomes associated with the scalar unit 1. 

 

 ik  ii ji ki  1j  

 weak strong electric 

 pseudoscalar vector scalar 

 SU(2) SU(3) U(1) 

 

We see also that, though physics might require two ‘spaces’ for its specification, and that, 

though these two spaces may contain identical information, it presents itself differently 

within them, through a chirality: 

 

 iK  iI jI kI  1J 

 

And we see that the units of the second ‘space’ I, J, K now adopt the characteristics of the 

mathematical objects they are connected to: 

 

 pseudoscalar vector scalar 

 

In addition to affecting charge, the combination also affects time, space and mass. We 

begin, once again, with 

 

 time  space  mass  charge 

 i  i  j  k  1  i  j  k 

 

To create the generators, we distribute the charge units onto the others: 

 



 ik  ii  ji  ki  1j 

 

This creates new ‘compound’ (and ‘quantized’) physical quantities: 

 

 energy momentum rest mass 

 E px  py  pz m 

 

If we regard E, px, py, pz, m simply as scalar values or ‘coefficients’, which are arbitrary in 

principle, and the algebraic operators ik, ii, ji, ki,1j as defining the physical meaning, that is, 

the nature of the physical quantities involved, then we can package the whole information as 

 

(ikE + iipx + jipy + kipy + jm) 

 

In physics, this combined object is nilpotent, squaring to zero, because 

 

                        (ikE + iipx + jipy + kipy + jm) (ikE + iipx + jipy + kipy + jm) = 0                    (1) 

 

and we can identify this as Einstein’s relativistic energy equation 

 

E
2
 – p

2
 – m

2
 = 0 

or, in its more usual form, 

E
2
 – p

2
c

2
 – m

2
c

4
 = 0 

 

The nilpotent Dirac equation 

 

The Dirac equation simply quantizes the nilpotent equation, using differentials in time and 

space applied to a phase factor for E and p. So equation (1) becomes 

 

 (–k / t – ii + jm) (ikE + ip + jm) e
–i(Et – p.r)

 = 0, 

 

the Dirac equation for a free fermion, by simultaneously applying nonconservation and 

conservation. The operator, (–k / t – ii + jm), is like a coding of all the possible space and 

time variations, which is ‘decoded’ using a ‘phase factor’, here e
–i(Et – p.r)

 .  

The most complete possible variation in space and time is defined by a phase factor which 

associates E with time and p with space, and then using the differentials  / t and  to 

recover (ikE + ip + jm) from the phase factor.  For a free particle, the most complete set of 

variations in space and time is given by e
–i(Et – p.r)

, and the expression which will recover (ikE 

+ ip + jm) using this as a phase factor is (– k / t – ii + jm). The phase factor e
–i(Et – p.r)

 is 

then the minimum expression that the differentials  / t and  can be applied to if space and 

time are to be varied without restriction. 

Including all possible sign variations of E and p, we obtain 

  

( k / t  ii + jm) ( ikE  ip + jm) e
–i(Et – p.r)

 = 0 



 

which is equivalent to a nilpotent Dirac equation of the form 

  

( k / t  ii + jm) = 0. 

  

We can also express it in operator form 

  

( ikE  ip + jm) ( ikE  ip + jm) e
–i(Et – p.r) 

= 0, 

  

where the operators E and p become i / t and –i as in the usual canonical quantization. 

The complete Dirac wavefunction in nilpotent form provides the particle state (represented 

by the first term) and the 3 possible states it could become by P, T and C transformations: 

 

 (ikE + ip + jm) 

 (ikE – ip + jm) P 

 (– ikE + ip + jm) T 

 (– ikE – ip + jm)  C 

 

Parity, time reversal and charge conjugation are essentially reversals in the signs associated 

with space, time and charge. 

We can interpret the expression 

 

(± ikE ± ip + jm) (± ikE ± ip + jm)  0 

 

as giving us both relativity and quantum mechanics. In quantum mechnaics we take the first 

bracket as an operator acting on a phase factor. The E and p terms can include any number of 

potentials or interactions with other particles. Squaring to 0 gives us the Pauli exclusion 

principle, because if any 2 particles are the same, their combination is 0. 

Fermions appear to be point-like objects with norm 0. In effect, the creation of an object 

like 

(± ikE ± ip + jm), 

 

squaring to zero, is the only way of defining a point in a space that is rotation and translation 

symmetric. We define a point at the interaction between two spaces, and the point-like 

fermion spends its whole existence switching between them (zitterbewegung), and we find 

that we cannot define a point, or the space in which it exists, without defining another space 

with which it interacts to produce a totality zero. One space will appear distorted with respect 

to the other, but each will contain the same information, or the information in one will be the 

reverse of the information in the other (Rowlands, 2007, 2013, 2014, 2015a). 

 

 

 

 



Vacuum 

 

To return to Pauli exclusion, and Nature as a totality of zero, we can imagine creating a 

particle (with all the potentials representing its interactions) in the form (± ikE ± ip + jm) and 

then being forced to structure the rest of the universe or vacuum, so that it can be represented 

by 

– (± ikE ± ip + jm) 

 

So both the superposition and combination states of fermion and vacuum become zero: 

 

(± ikE ± ip + jm) – (± ikE ± ip + jm) = 0 

– (± ikE ± ip + jm) (± ikE ± ip + jm) = 0 

 

The ‘hole’ left by creating the particle from nothing is the rest of the universe needed to 

maintain it in that state. We give it the name vacuum. So the vacuum for one particle cannot 

be the vacuum for any other. Vacuum tells us ‘where’ the other ‘space’, based on i, j, k, is 

besides ‘real’ space, based on i, j, k. Its inaccessibility is demonstrated by the chirality 

between matter and antimatter, positive and negative energy states, and forward and 

backward directions in time. 

The fermionic structure (± ikE ± ip + jm) posits two states with +E and two with –E, 

which is equivalent to two with + time direction and two with –. And yet only +E and +t 

states are observed, and the universe is predominantly made of matter rather than antimatter. 

The second space, the one in which energy and time become negative, is the vacuum space, 

the one which encompasses the ‘rest of the universe’, as opposed to the real space defining 

the point-particle. It is the one in which charge is conjugated and time reversed 

simultaneously. 

The nilpotent structure incorporates both on an equal basis, and it is interesting to recall 

that it was the seeming inability to do this which led Feynman to develop the path integral 

method of quantum mechanics as opposed to the previous use of Hamiltonian methods. 

Perhaps this indicates that, as long as we use the nilpotent formalism, we will be able to 

reformulate path integral calculations using Hamiltonians. 

The nonlocal aspect of the fermionic nilpotent state ( ikE  ip + jm) is defined by a 

continuous vacuum –( ikE  ip + jm). The continuous vacuum, with its negative energy, 

appears to be that associated with gravity. We can consider the fermion itself, with positive 

energy and ( ikE  ip + jm), as being in some sense an inertial term, and discrete fermions 

create their inertial mass through interaction with the continuous vacuum. Essentially, charge 

gives us the vacuum space dimensions, while mass gives it the continuous (negative) energy 

and nonlocality. 

Further, we can use the operators k, i, j to effectively partition the continuous vacuum 

state, or the inertia which opposes this, into discrete components with a dimensional 

structure, which can then be identified as the weak, strong and electric components of 

vacuum, responding respectively to the discrete weak strong and electric charges. We can 



postmultiply ( ikE  ip + jm) by the idempotent k( ikE  ip + jm) any number of times, 

without changing its state  

  

( ikE  ip + jm) k( ikE  ip + jm) k( ikE  ip + jm) …  ( ikE  ip + jm) 

  

The idempotent acts as a vacuum operator, not changing the state. We can show that the 

same applies if we use the idempotents i( ikE  ip + jm) and j( ikE  ip + jm):  

  

( ikE  ip + jm) i( ikE  ip + jm) i( ikE  ip + jm) …  ( ikE  ip + jm) 

( ikE  ip + jm) j( ikE  ip + jm) j( ikE  ip + jm) …  ( ikE  ip + jm) 

 

In each case, every alternate bracket changes the sign of its E, p or E and p (equivalent to m) 

terms, leading to the creation of a bosonic state, here defined as a combination of fermion and 

antifermion, or equivalent. The only difference between the three is that the alternate 

brackets can be written as 

  (–ikE + ip + jm)  for  k 

  (ikE – ip + jm)  for  i 

  (–ikE – ip + jm)  for  j 

 

This means that they undergo respective T, P and C transformations. In addition the 

combinations with the unchanged bracket (ikE + ip + jm) means that the three operators 

produce different types of bosonic states, respectively: 

 

spin 1 

spin 0 

paired fermion 

 

We can regard T and C as transformations in vacuum space because they concern vacuum 

space quantities and lead to negative energy states. The P transformation concerns the real 

space quantity and leads to a positive energy state. However, it could occur in vacuum space 

by a combined TC transformation, and so real fermion / antifermion states are not purely left- 

/ right-handed, as their weak interactions would suggest. The degree of overlap is determined 

by the m term, which is said to be the product of the zitterbewegung, or switching of a 

fermion between + and –E states or real space and vacuum. 

We can see how the 3 bosonic states are related to vacua produced by the 3 quaternionic 

operators, and the 3 discrete transformations: 

 

 weak spin 1 T 

 (ikE + ip + jm) k (ikE + ip + jm) k (ikE + ip + jm) k (ikE + ip + jm) … 

 (ikE + ip + jm) (–ikE + ip + jm) (ikE + ip + jm) (–ikE + ip + jm) … 

 

 

 



  electric spin 0  C 

 (ikE + ip + jm) j (ikE + ip + jm) j (kE + ip + jm) j ikE + ip + jm) … 

 (ikE + ip + jm) (– ikE – ip + jm) (ikE + ip + jm) (– ikE – ip + jm) … 

 

  strong paired fermion state  P 

 (ikE + ip + jm) i (ikE + ip + jm) i (ikE + ip + jm) i (ikE + ip + jm) … 

 (ikE + ip + jm) (ikE – ip + jm) (ikE + ip + jm) (ikE – ip + jm) … 

 

Vacuum space and charge 

 

Now, the vacuum space, is the one defined by the units connected with charges, i, j, k. 

Here we see that the units have multiple roles: 

 

 Charges 

 PCT operators 

 Dimensions of ‘vacuum space’ 

 Generators of the 3 additional terms in the Dirac wavefunction 

 Creation operators converting fermions to 3 types of boson 

 

The complete vacuum, defined by (ikE + ip + jm)  or –(ikE + ip + jm), can be considered 

as equivalent to that defined by gravity or inertia, which the gauge forces split into 3 

dimensional components. Also, taking (ikE + ip + jm) to convey the angular momentum 

information about a particle state, we can see that the units also say something about the 

respective conservation laws of handedness, direction and magnitude of this quantity. 

Ultimately, this introduces the SU(2), SU(3) and U(1) group operators into particle physics, 

and explains why the symmetry between the 3 charges is broken. But the key idea is that the 

total angular momentum information can be obtained either through k, i and j of iE, p and m, 

or through the i, j, k of p. 

The two ‘spaces’ contain exactly equivalent information about the whole of physics, 

although in one case the symmetry between the units appears to be broken and in the other it 

is exactly preserved. To show that the information is equivalent, we will consider how the 

uniqueness of a fermion wavefunction is determined to maintain Pauli exclusion. So if we 

know the iE, p and m values in (± ikE ± ip + jm) for any fermion, we can show that those of 

another fermion must be different. But, there is also a completely different way of 

establishing Pauli exclusion, that is, by realising that fermions have antisymmetric 

wavefunctions. 

The nilpotent structure explains immediately why we have Pauli exclusion between 

fermions, but the alternative, conventional, way of explaining this property leads us to a 

profound insight on the nature of the information available in quantum systems if we 

structure it in nilpotent form. We define fermion wavefunctions to be antisymmetric, so that: 

 

(12 –  2 1) = –( 21 – 12) 

  



In nilpotent terms, we write (12 –  2 1) as 

 

(± ikE1 ± ip1 + jm1) (± ikE2 ± ip2 + jm2) 

– (± ikE2 ± ip2 + jm2) (± ikE1 ± ip1 + jm1) 

= 4p1p2 – 4p2p1 = 8ip1  p2 = – 8ip2  p1. 

 

This result is clearly antisymmetric, but it also has a quite astonishing consequence, for it 

requires any nilpotent wavefunction to have a p vector, in real space, the one defined by the 

axes i, j, k, at a different orientation to any other. The wavefunctions of all nilpotent fermions 

then instantaneously correlate because the planes of their p vector directions must all 

intersect. At the same time, the nilpotent condition requires the E, p and m combinations to 

be unique, and we can visualize this as constituting a unique direction in vacuum space along 

a set of axes defined by k, i, j or k, i, j, with coordinates defined by the values of E, p and m.  

The directions of the vectors in each space carry all the information available to a 

fermionic state, and so the information in the two spaces is totally dual, and is equivalent to 

the instantaneous direction of the spin in the real space. The total information determining the 

behaviour of a fermion and even of the entire universe is contained in a single spin direction. 

The information here must be the same as in the combination of iE, p and m. That is, we can 

represent the unique spin direction in parallel axes in two different spaces. 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

Though the duality results in fermion and vacuum occupying separate 3-dimensional 

‘spaces’, which are combined in the double Clifford algebra defining the singularity state, 

these ‘spaces’, though seemingly different in observational terms, are truly dual, each 

containing the same information (angular momentum), and the duality manifests itself 

directly in many physical forms. 

Angular momentum, which in some form combines all the information of the phase space 

of the particle, shows this duality directly, because, as a 3-dimensional pseudovector quantity, 

it has the rotation symmetric and nonconserved 3-dimensionality of space; but, at the same 

time, it shows 3 different aspects and 3 different conservation laws connected with them, 

which are connected by a different and rotation asymmetric 3-dimensionality. 

real space

kp3

jp2

ip1

vacuum space

kiE

jm

ip

Pauli exclusion

antisymmetric wavefunctions nilpotency

spin direction                         spin direction



One of the remarkable aspects of this analysis is that it shows that the connection between 

space and time, in special relativity, is not really 4-dimensional at all, but 3-dimensional, 

though the 3 dimensions involved are different from those of space. We can write out the 

relativistic nilpotent as 

ikE + iipx + jipy + kipy + jm 

or even 

ikt +  iix + jiy + kiz + j 

 

The 3 components of space and momentum are denoted by the 3 blue vector coefficients, 

but they do not add directly to the pseudoscalar iE or it. They only connect by additional, red, 

coefficients, which are those of another space. Also, the space-time connection is not 

privileged over those with mass and charge. If we write the relativistic nilpotents in the form: 

 

ikE + ip + jm 

and 

ikt + iir + j 

 

we can see that there is an immediate analogy with the cases of 3 static forces in equilibrium 

or a closed path round a right-angled triangle (say with lengths 3, 4 and 5) where 

 

ikW + iT1 + jT1 

 

or                               ik5 +  i4 + j3 

 

Where we have a zero total of this kind, we can consider it to be a case of finding the 

resultant in the dual space which cancels that in real space, showing the significance of 

Newton’s third law in this connection. 

If we represent particles in terms of their charge structures, this can be done in two 

different spaces. If we look at baryons composed of 3 quarks, we can see their behaviour in 

terms of real space, or that of the momentum operator, and this has rotation symmetry. But 

we can also see it in terms of vacuum or charge space, and this is rotation asymmetric. 

Space and charge show us the dual aspects of angular momentum, nonconserved and 

symmetric, and conserved and asymmetric. All 3-dimensional quantities are of this kind, one 

that is ultimately expressed in Noether’s theorem. To any 3-dimensionality that gives us 

nonconservation and rotation symmetry, there is always attached another that gives the same 

information using conservation and rotation asymmetry. 

This is why the ultimate expression of physics requires phase space. To any description 

involving space or space-time, we require an equivalent description involving vacuum space, 

manifesting itself through charge, or through the combination of charge and space and time, 

which is described as energy-momentum. At the quantum (point-particle) level, these cannot 

be separated. This is how the combination of all 3 charges becomes necessary to describe the 

behaviour of the particular charges which is associated with spatial 3-dimensionality. The 

behaviour of the strong interaction can be completely determined by the spatial 3-



dimensionality of the momentum operator in the nilpotent wavefunction. However, the 

situation of the strong charge as a 3-dimensional operator within the fermion state requires 

the application of the other 3-dimensionality associated with charge. 

 

Baryons 

 

Effectively, the vector aspect of the strong charge requires a source term and 

corresponding vacuum with three components. Though we clearly cannot combine three 

components in the form: 

 

(ikE  ip + jm) (ikE  ip + jm) (ikE  ip + jm) 

 

as this will automatically reduce to zero, we can imagine a three-component structure in 

which the vector nature of p plays an explicit role 

 

(ikE  i ipx + jm) (ikE  i jpy + jm) (ikE  i kpz + jm) 

 

This has nilpotent solutions when p =  i ipx, p =  i jpy, or p =  i kpz, or when the 

momentum is directed entirely along the x, y, or z axes, in either direction, though these, of 

course, are arbitrarily defined. Any other phases can be written as a superposition of these. 

Using the appropriate normalization, these reduce to 

 

(ikE + iipx + jm) +RGB 

(ikE – iipx + jm) –RBG 

(ikE – ijpy + jm) +BRG 

(ikE + ijpy + jm) –GRB 

(ikE + ikpz + jm) +GBR 

(ikE – ikpz + jm) –BGR 

 

with the third and fourth changing, very significantly, the sign of the p component. Because 

of this, there has to be a maximal superposition of left- and right-handed components, thus 

explaining the zero observed chirality in the interaction (and the mass of the baryon). 

The group structure required to maintain these phases is an SU(3) structure, with eight 

generators and a wavefunction, exactly as in the conventional model using coloured quarks, 

 

 ~ (BGR – BRG + GRB – GBR + RBG – RGB). 

 

‘Colour’ transitions in the 3-component structures are produced either by an exchange of 

the components of p between the individual quarks or baryon components, or by a relative 

switching of the component positions, independently of any real distance between the 

components. No direction can be privileged, so the transition must be gauge invariant, and 

the mediators must be massless, exactly as with the eight massless gluons of the gluon 



structure. We have written only the first term of the 4-component spinors, but we have 

retained the two spin states, as these will be needed explicitly. 

The complete wavefunction will, in effect, contain information from the equivalent of six 

allowed independent nonlocally gauge invariant phases, all existing simultaneously and 

subject to continual transitions at a constant rate: 

 

(ikE + iipx + jm) (ikE +  ...  + jm)  (ikE +  ...  + jm) +RGB 

(ikE – iipx + jm) (ikE –  ...  + jm) (ikE –  ...  + jm) –RBG 

(ikE +  ...  + jm) (ikE + ijpy + jm) (ikE +  ...  + jm) +BRG 

(ikE –  ...  + jm) (ikE – ijpy + jm) (ikE –  ...  + jm)  –GRB 

(ikE +  ...  + jm) (ikE +  ...  + jm) (ikE + ikpz + jm) +GBR 

(ikE –  ...  + jm) (ikE –  ...  + jm) (ikE – ikpz + jm) –BGR 

 

The simultaneous existence of all phases further means that individual quarks, and such 

identifying characteristics as electric charges, are not identifiable by their spatial positions 

(unlike, say, the proton and electron constituting a hydrogen atom), thus explaining, for 

example, why the neutron has no electric dipole moment. Just as U(1) establishes that 

spherical symmetry of a point source requires the rotation to be performed independently of 

the length of the radius vector, so SU(3) requires the rotation to be independent of the 

coordinate system used. In terms of Noether’s theorem, while U(1) conserves the magnitude 

of angular momentum, SU(3) conserves the direction. 

These are the established characteristics of the strong interaction and here we have an 

explanation, derived on an analytic basis, for a force with these characteristics. If we now 

look at how the expression 

 

(ikE  i ipx + jm) (ikE  i jpy + jm) (ikE  i kpz + jm) 

  

with its spatial 3-dimensionality, fits into the 3-dimensionality associated with the charge 

picture, we can recall that the 4 components in the Dirac spinor, can be seen to represent the 

fermion as seen in terms of gravity / inertia, strong, weak and electric vacua. The 3 

momentum components have to be mapped onto the space created by the 3 charges. The 

principal options are: 
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and 
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Here, we assume only one dimension of p is nonzero, say p3, so determining the charge 

structure, with the 3 charges distributed. 

We can also represent it using a phasor diagrams, with the charges separated in baryons, 

but not in leptons: 

 
For mesons we would have: 

 
 

If the strong charge is absent, we need only one phase, with all charges aligned. 
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The wavefunctions suggest that the underlying charge structures of quarks are as in the 

first table below, with the more familiar fractional electric charges appearing in observation, 

as in the second table, because the strong interaction is absolutely gauge invariant: 

 

 Blue Green Red 

    

 up e e 0 

 B 0 0 

 down 0 0 –e 

 B 0 0 

 

 Blue Green Red 

    

 up 2e / 3 2e / 3 2e / 3 

 B / 3 B / 3 B / 3 

 down –e / 3 –e / 3 –e / 3 

 B / 3 B / 3 B / 3 

 

A similar fractionalization of electric charge occurs in the fractional quantum Hall effect, 

where the fractional status of the charge on an electron is produced by its weak interaction 

with an odd number of flux lines > 1. In both cases, it is a different electric-charge 

independent force which ensures that the electric charges become fractional. The underlying 

charge structures can be used to represent the Standard Model simply in a set of 4 quark-

lepton tables. They also predict Grand Unification of the 4 forces at the Planck mass, explain 

CP violation, solve a serious anomaly in the Higgs mechanism as applied to finding the 

masses of fermion states, etc. (Rowlands, 2007, 2014, Rowlands and Cullerne, 2001) 

 

 

 

 

 

 

 

 

 

 



 

            A   B G R    B        B G R  
   u +e 1j 1j 0i    u +e 1j 1j 0i  

    +s 1i 0k 0j   +s 0i 0k 1j  
  +w 1k 0i 0k   +w 1k 0i 0k  
   d –e 0j 0k 1j    d –e 0j 0k 1j  
  +s 1i 0i 0k   +s 0i 0k 1j  
  +w 1k 0j 0i   +w 1k 0j 0i  
   c +e 1j 1j 0i    c +e 1j 1j 0i  
  +s 1i 0k 0j   +s 0i 0k 1j  
  –w zPk 0i 0k   –w zPk 0i 0k  
   s +e 0j 0k 1j    s +e 0j 0k 1j  
  +s 1i 0i 0k   +s 0i 0k 1j  
  –w zPk 0j 0i   –w zPk 0j 0i  
   t +e 1j 1j 0i    t +e 1j 1j 0i  
  +s 1i 0k 0j   +s 0i 0k 1j  
  –w ZTk 0i 0k   –w ZTk 0i 0k  
   b +e 0j 0k 1j    b +e 0j 0k 1j  
  +s 1i 0i 0k   +s 0i 0k 1j  
  –w ZTk 0j 0i   –w ZTk 0j 0i  
 

 

 

            C   B G R    L         

 

 

 

e 
   u +e 1j 1j 0i   +e 1j 1j 0j 

    +s 0i 1k 0j   +s 0k 0i 0i 

  +w 1k 0i 0k   +w 0i 0k 1k 

   d –e 0j 0k 1j       e 

  +s 0i 1k 0j   –e 0i 0k 1j 

  +w 1k 0j 0i   +s 0j 0i 0i 

   c +e 1j 1j 0i   +w 0i 0k 1k 

  +s 0i 1k 0j     

 

 

 

 

  –w zPk 0i 0k     +e 1j 1j 0j 

   s +e 0j 0k 1j   +s 0k 0i 0i 

  +s 0i 1k 0j   –w 0i 0k 1k 

  –w zPk 0j 0i       

   t +e 1j 1j 0i   –e 0i 0k 1j 

  +s 0i 1k 0j   +s 0j 1i 0i 

  –w ZTk 0i 0k   w 0i 0k zPk 

   b +e 0j 0k 1j     

 

 

 

 

  +s 1i 0i 0k    +e 1j 1j 0j 

  –w 0i 1k 0j   +s 0k 0i 0i 
 

 

3-dimensionalities deriving from space and charge 

 

We have seen that 3 components of charge is a 3-dimensionality separate from that of 

space, but acting against it to produce zero totality. Other 3 dimensionalities emerge from 



those of space and charge. So, as we have seen, we have 3 quarks in a baryon because we 

have 3 dimensions of space and also of momentum. It is simultaneously an expression of the 

existence of 3 types of charge. 

The existence of 3 generations of fundamental particles is an interesting case, which 

comes from CPT symmetry. According to the Dirac equation, massless fermions, if they 

existed, would be purely left-handed. So the measure of a fermion is a measure of how much 

right-handedness it contains. Higher mass fermions are more right-handed than lower mass 

ones. We can see the second and third generations as producing step-functions in right-

handedness and so in mass values by successively violating P and T symmetries. The relative 

masses of the quarks and leptons in the 3 generations seem to be determined by the 

electroweak and strong coupling constants. This is discussed in the Appendix. 

Now, a nonconserved 3-D quantity has rotation symmetry, so the parts are 

indistinguishable. This is characteristic of quantities whose dimensionalities come from that 

of space. A conserved 3-D quantity has rotation asymmetry, with the parts distinguishable 

and different, though in a systematic way which comes from its interaction with its 

counterpart in real space. These can be related to vacuum space derived from the units i j k, 

and we only know about these indirectly through the combination. 

There is, finally, an interesting application of these ideas in a seemingly ‘pure’ 

mathematical context, which gives indications of actually being determined by a physical 

argument. It has been a long-held belief of mine that physics and mathematics are linked at a 

much deeper level than one merely ‘using’ the other, and that they exhibit same basic patterns 

and structures. Several examples can be suggested, but one is of special interest because it 

leads to an iconic pure mathematical equation. Here, we wish to find a physical answer to a 

specifically mathematical question: if we start with a scalar unit real number, say 1, how do 

we find the conjugate number to obtain totality zero? Physically, mass, which uses scalar, 

real numbers, is a conserved, real, and nondimensional quantity. To find the conjugate to this, 

we look for something that is nonconserved, imaginary and dimensional. 

In mathematics and physics, nonconservation is expressed by differentiation: e is a number 

that arises only out of differentiation; i is the basis of imaginary numbers; and  is a number 

that arises only out of 3-dimensionality. So e
i

 gives us a number which is conjugate to 1. The 

transformations here are equivalent to the physical TCP or PTC, and 3-dimensionality, as 

always, plays a doubly crucial role. So the famous equation e
i

 = –1 or e
i

 +1 = 0 may point 

to a direct connection between mathematics and physics at the most fundamental level. 

 

Appendix: 3 generations of fermions and their masses 

 

The 3 generations of fundamental fermions represent a special aspect of 3-dimensionality 

connected with C, P and T and m, p and E. 

 

 u d e e 

 c s   

 t b   

 



They have ascending masses based on the symmetry-breaking associated successively with 

violations of parity and time-reversal symmetry, which are the result of electroweak 

couplings, whereas differences between quarks and leptons in the same generation and 

isospin state appear to be due to the presence of strong couplings in the former and their 

absence in the latter. In terms of mass, the highest level, with all symmetries broken, is the 

maximal value associated with the Higgs field, the source of all mass. This is seen in the third 

generation. The second generation has masses associated with the energy scale of the regular 

weak interaction, where symmetry-breaking first occurs and below that associated with the 

breaking of all symmetries. This can be taken as close to the mass of the Z boson (91.2 GeV). 

The masses of the particles in the higher generations, in particular, are related to the 

creation of an electric charge unit (which is generally connected to the creation of 

electroweak mass as it generates a degree of right-handedness not strongly present in the pure 

weak interaction) within a distance of the order of the Compton wavelength, either standard 

or reduced. The standard Compton wavelength is the length scale relevant to mass 

conversions into energy, where the reduced wavelength is the one used when discrete mass is 

created. 

The mass of t, the heaviest fermion, is close to maximal coupling to the Higgs field, 

expectation value f  246 GeV. So the mass of t becomes  f / 2  174 GeV, with no specific 

process needed to explain it. In the same generation, but with no strong charge,  has a mass 

close to that which a single electric charge e would need to be confined by energy 

conservation to the reduced Compton radius associated with 246 GeV. This works out at  

f, where  is the electromagnetic fine structure constant. The interactions associated with  

(unlike those associated with t) are purely electroweak, and the weak interaction does not 

extend to this length. The mass of b should be connected to that of its isospin ‘down’ partner, 

, and, in fact, it appears to be equivalent to that of  divided by 3, the strong interaction 

coupling at the associated energy (approximately 2.35). 

In the second generation, with one degree less symmetry-breaking, masses are reduced by 

the appropriate electroweak factor, in this case , and c has a mass equivalent to that of t 

times , or f / 2. This is also equivalent to that producing the charge e at the reduced 

Compton wavelength generated by the mass of maximal coupling to the Higgs field (i.e. that 

of t). The c mass (at 1.2 to 1.3 GeV) differs from that of t due to the electroweak coupling 

only, as the strong coupling is unchanged. The muon , the counterpart in this generation to 

, has the mass needed to generate e over the standard Compton wavelength for the Z energy 

scale. (We may note here that the energy scale here is determined by that of a real particle, 

whereas that for t is determined by the energy of a field.) As in the third generation, s, the 

isospin ‘down’ counterpart to , can again be taken to be equivalent to  with an additional 

strong interaction, and so has a mass equivalent to that of  divided by 3, the strong 

interaction coupling at the associated energy (which, in this case, is approximately 0.9). 

In the first generation, where there is no electroweak symmetry breaking, the masses are 

again reduced by a factor close to . Here, the masses of the u and d quarks are not well 

established, but that of u is certain of the order of the mass of c times  at 9 MeV (although  

may conceivably determine the mass ratios of the whole generations rather than just the 

isospin ‘up’ component). The electron mass is close to 2/ 3 times that of  though the 



reason for the factor 2/3 is not readily apparent. (See the suggestions in Rowlands, 2015b.) 

The strong interaction does not dominate at this level in the mass of the d quark where its 

contribution would be a relatively small mass of e / 3 (where 3 would be a number 

considerably greater than 1). Clearly, the main contribution at this scale would be 

electroweak. 
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